International Journal of KIMICS, Vol. 6, No. 3, September 2008

279

A Study on Iconic Animation based on
Object Modeling Technique

Suck-Tae Joung, Member, KIMICS

Abstract— We propose the iconic animation of the
software requirement specifications by using the
object and dynamic models of the object modeling
technique (OMT) methodology. In order to produce
the iconic animation, we use “graphical classes” and
“icon transformations.” In general, the graphical
classes are defined for each class of the object
diagram. The icon transformations which show the
activities of the application are constructed by
considering the meaning of the activities and are
defined by either basic or compound icons. The icon
transformations are added to the state diagrams to
generate extended state diagrams. The animation
system generates the header files and the code
instantiating GUI from the object diagram having
graphical classes. The system also generates “event
methods” from the extended state diagrams. When
the event methods are executed, the behavior of the
events is animated by the icon transformations.

Index Terms— Iconic Animation, Object Modeling

Technique (OMT), Graphical Classes, Icon
Transformation, Event Method.
I. INTRODUCTION

OBIJECT Modeling Technique (OMT) is based on the
development of three-part models of the system {1]. The
object model, represented with object diagram, captures
the objects in the system and their relationships. The
dynamic model, represented with state diagrams,
describes the reaction of objects in the system to events,
and the interactions between objects. The functional
model specifies the transformations of object values and
constraints on these transformations. These models are
created in analysis phase and are gradually refined in
design phase. In implementation phase, the models are
converted into executable code. CASE tools, such as
Rational Rose and Rhapsody, can generate executable
code from object or state diagrams [2] [3]. However,
when requirement specifications are not correct, the
generated executable code becomes useless.

In software development, the most important thing is to

Manuscript received February 20, 2008; revised
August 1, 2008. Suck-Tae Joung is with the Division of
Electrical Electronic and Information Engineering,
Wonkwang University, Tksan, 570-749, Korea (Tel:
+82-63-850-6888, Email: stjoung @wonkwang.ac.kr)

find the correct requirement specifications at the analysis
stage. Animation is a powerful means of validating the
requirement specifications. It helps both the user and
analyst to understand the requirement specifications
because the images represent real objects as well as their
spatial and temporal relationships[4].

We propose the iconic animation of the software
requirement specifications by using the object and
dynamic models of the OMT methodology. The iconic
animation means producing animation by moving icons
and changing their appearance. A set of icons is
associated with each class of an application. To represent
icon movement and changes in their appearance we
introduce the concept of icon transformation [5].

I1. Lift Problem

We show the lift problem [6] to explain our
method of iconic animation. This problem concerns
the logic to move lifts between floors according to
the five constraints [6]. We consider the lift system
controlling 3 lifts and 6 floors as a case study.

A. The object and state diagrams

Figure | shows the object diagram of the lift problem.
There is normally one class, the Controller [7] [8], that
contains the control of the system. After initializing the
system, the Controller transfers its control to the user of
the system. So it is the interface between an external
actor and the application. The value “6” (“3”) of
multiplicity specifies the number of the instances of class
Floor (Lift) which is related to a single instance of the
associated class Controller.

Figure 2 shows the state diagrams of the lift problem.
Each state diagram shows the behavior of a particular
class. In the state diagram of the Lift, the state of the Lift
changes from MoveState to StopAtState on the
occurrence of the event StopAt.

B. Icon definition

Icons are visual symbols of the objects of software
requirement specifications. It is important to define simple
and understandable icons. If they are misinterpreted, the
requirement specifications cannot be understood [9] [10].
We define some basic icons (Figure 3).

* Defining basic icons for each class of the object
diagram : The icons LIFT-A, FLOOR-A and PERSON-A
are defined due to the presence of the corresponding
classes.

280 Suck-Tae Joung : A Study on Iconic Animation based on Object Modeling Technique

* Defining basic icons for activities of the state
diagrams : The icon LIFT-B is constructed from the
activity OpenDoor in the state diagram of the Lift. The
icons FLOORBUTTON-A and FLOORBUTTON-B are
defined from the activities FloorButtonOff and
FloorButtonOn in the state diagram of the Lift,
respectively. ~ The icons UPBUTTON-A and
DOWNBUTTON-A are constructed from the activity
UpDownRequestButtonOff in the state diagram of the
Floor. The icons UPBUTTON-B and DOWNBUTTON-B
are constructed from the activity UpDownRequest
ButtonOn in the state diagram of the Floor.

We construct some compound icons (Figure 4).

* Defining compound icons for activities, considering
the states in which the corresponding activities are
contained : The compound icon CLOSE is defined from
the activity CloseDoor of StopAtState in the state
diagram of the Lift. The state StopAtState represents that
a lift arrives at the floor. This icon is formed by
combining the basic icons LIFT-A and FLOOR-A. The
compound icon OPEN is constructed from the activity

OpenDoor of StopAtState in the state diagram of the Lift.

This icon is formed by combining the icons LIFT-B and
FLOOR-A. The compound icons MOVE-A and MOVE-
B are constructed from the activity MoveNext of
MoveState in the state diagram of the Lift. The state
MoveState represents that lift is moved next floor. These
icons are constructed by combining the basic icons LIFT-
A and FLOOR-A. The compound icons GETON-A and
GETON-B are defined from the actity PersonGetOn of
GetOnState in the state diagram of the Person. The state
GetOnState shows that a person gets on the lift arrived at
the floor. These icons are constructed by combining the
basic icons LIFT-B, FLOOR-A and PERSON-A.

Controller
CallLift

o
cd ®:

Floor Lift
floorID IiftID
upList curF
downlList dirie?cl:tion
T toFloor
kl;?\[,ép upFloor
ownFloor
getoffPerson
getonPerson
AssignLift
waiting Move
StopAt
Enter
Person .
personlD getting on
direction
@ fromFloor
toFloor
GetOn
GetOff

Fig. 1 Object diagram of the lift problem

Controller Lift

(" StopAtState
do: FloorButtonOff

/ Initalization

ControllState nDoor
tOff Call
CallLift/ ArriveCall
AssignLiftCall CloseDoor
Enter / FloorButtonOn
_AssignLift / DecideLift

Movel T StopAt

" MoveState
do : MoveNext

___ StopAtCall
Person Floor
GetOn T

GetOnState FloorState
do: PersonGetOn LineUp/ UpDownRequestButtonOn

EnterCall CallLiftCall
GetOff Arrive / UpDownRequestButtonOff

GetOnCall

GetOffState
do : PersonGetOff

Fig. 2 State diagrams of the lift problem

A

PERSON-A

LIFT-A FLOOR-A

LIFT-B FLOORBUTTON-A FLOORBUTTON-B

@ @@ 0 O

UPBUTTON-A UPBUTTON-B DOWNBUTTON-A DOWNBUTTON-B

Fig. 3 Basic icons for the lift problem

T

GETON-A GETON-B

CLOSE OPEN

MOVE-A MOVEB

Fig. 4 Compound icons for the lift problem

C. The object diagram having graphical classes

To generate the GUI for the application, we define the
object diagram having graphical classes. The icons and
icon transformations which represent the objects and
activities of the application become the types of the
graphical classes. Figure 5 shows the object diagram
having graphical classes of the lift problem. In general,
the added graphical classes correspond to the classes of
the object diagram. For example, the Controller, Floor,
Lift and Person correspond to GController, GFloor, GLift
and GPerson, respectively. For the icons of the floor
buttons and up/down request button, we need to the types
of other graphical classes. We added GFloorButton,
GUpButton and GDownButton classes to the object

International Journal of KIMICS, Vol. 8, No. 3, September 2008

281

diagram.

Because each floor has several display areas, the
GController has reference of the GFloor type for
referring each floor. The GFloor then maintains
references of GLift, GPerson, GUpButton, GDown
Button and GFloorButton types. The GController
initializes the GFloor objects by receiving
GUIInitialization message from the Controller.

message
Controller send GController
CallLift GUIInitialization
6 ‘ l 3 6 i
Floor Lift GFloor
floor] D LfdD floorID
uplist curF
downList direction
Lioep | | o
Arrive
ownFloor 3 ‘ *
getoffPerson 3
getonPerson GLift GFloorButton
waiting flxvslggngﬁt Display Display
StopAt
Enter GPerson GDownButton
Display Display
Person .
personiD getting on GUpButton
direction Displ
fromFloor splay
toFloor
GetOn
GetOff

Fig. 5 Object diagram having graphical classes

D. Extended state diagrams having icon
transformations

We explain guard conditions which are used as guards
on transitions and add icon transformations which show
animation for the corresponding activities to the state
diagrams (Figure 6).

The guard condition on a transition is shown as a

Boolean expression in brackets following the event name.

A guarded transition fires when its event occurs, but only
if the guard condition is true. For example, when StopAt
event (state diagram of the Lift) occurs, if the condition
StopAtNeeded is true, its guarded transition fires. The
toFloor is a Boolean array whose elements that
correspond to the destination floors of the Person objects
become true. The upFloor (downFloor) is a Boolean
array whose elements become true if the corresponding
up (down) request button on the floor is pressed. For
example, when GetOn event (state diagram of the
Person) occurs, if Boolean array upFloor or downFloor is
true in the current floor, its guarded transition fires.

The icon transformations are constructed by
considering the meaning of the activities in the states.
Usually they have names and are enclosed between
“{“ and “}” symbols. They are composed of starting and
ending icons and are enclosed between “<” and “>”
symbols. These icons are defined by either basic or
compound icons. For example, because the meaning of
the activity FloorButtonOff (StopAtState of the Lift)
animates “off floor button into the lift,” the starting and
ending icons consist of the basic icons which are
FLOORBUTTON-B and FLOORBUTTON-A. The icon
transformation name of the activity FloorButtonOff is
FloorButtonOffT. The icon transformation of activity

OpenDoor (StopAtState of the Lift) consists of the
compound icons CLOSE and OPEN, because the
meaning of this activity animates “open the door of the
lift.” The icon transformation name of this activity is
OpenDoorT.

Sometimes an activity has two icon transformations. If
an activity has two icon transformations, we add a
condition following the icon transformation name
because of selecting an appropriate icon transformation.
This condition is enclosed between “[* and “]” symbols.
For example, the activity UpDownRequestButtonOn
(LineUp event of the Floor) has UpRequestButtonOnT
and DownRequestButtonOnT. The condition which
selects an appropriate icon transformation is that the
request button pressed by Person object is whether up or
down request button. UpDownButton is method which
detects a kind of up/down request button. If Person
object presses up request button (UpDownButton() == 1),
UpRequestButtonOnT is displayed. If Person object
presses down request button (UpDownButton() == -1),
DownRequestButtonOnT is displayed.

—Lift
StopAtState ' MoveState ™\

do: FlootButtonOff do : MoveNext
{ FlootButtonQffT} {UpMoveT}[DitectFinder() == 1}

<@~@E>
OpenDoor [MoveNeeded (3]
O} T — < > - e >

< - >

{ DownMove T} [DitectFinder0) = - 11

GetoffCall

AtriveCall
CloseDoor SpotAt
[StopAtNecded()]
- L
© N) ﬁ ”

Enter/ FlootButtonOn
{ FloorButtonOnT } - StopAtCal] J
<@-@>
\ AssignLift/ DecideLift ____J/
Petson Flgot
GetOn [upFloocurF} It ?
downFloot[curF]] (" FloorState ™

GetOnState

do: PersonGetOn
{ PersonGetOaT}

EnterCall
GetOff {toFloot{catF]
GetOffState

LineUp/ UpDownRequestButtonOn
{ UpRequestButtonOnT)

[UpDpwaButton() == 1]
<@-@>

{ DownRequestButtonOnT})
[UpDownButton() == -1]

<@ -®>
CallLiftCall

Astive/ UpDownRequestButtonOff
{UpRequestButtonOFT }

do: PersonGetOft [DitectEjnder() == L && upFlootfcutF]]
{ PersonGetOFfT) < - >
| DownRequestButton OffT}
< H - > [DitcctFinder() = -1 && downFlootfcurF]]
9 -0
__ GetonGall)

Fig. 6 Extention of the state diagrams

I1I. Generating animation code

A. Generating header files and the code instantiating
GuUI

After finding information about the classes in the
object diagram having graphical classes, the header files
for them and the code instantiating GUI are generated. In

282 Suck-Tae Joung : A Study on Iconic Animation based on Object Modeling Technique

general, attributes and operations in the object diagram
having graphical classes become variables and headers
of the event methods in the header files, respectively.

For example, the header files for the classes Controller
and Lift in Figure 5 are generated as in Figure 7. The
Controller class has aggregation relationship with Floor
and Lift classes. The composite class, the Controller,
contains floorList and liftList objects of types Floor and
Lift classes, respectively. The main method which is
used to initialize these objects is defined to the
Controller class. The number of these objects is
generated as many as the values “6” and “3” of
multiplicity of Floor and Lift, respectively. In order to
construct the GUI components, the GUIllnitialization
message is sent to GController object. The Lift object
keeps its own control and does not wait for incoming
messages from other objects. It executes a continuous
loop and in each iteration it checks whether there is any
outstanding request that should be serviced. That is why,
the Lift class is defined as a Java thread. The continuous
loop which calls Move method of the Lift is placed
inside the run method.

class Contoller {
public static Floor[] floorList;
public static Lift{] fiftList;

public static void main(String args[]} {
floorList = new Floor[6];
liftList = new Lift{3];
for(inti=0;i<8;i++)
floorListi] = new Floor(i};
for(inti=0;i<3;i++)
liftlList[i] = new Lift(i);
GController.GUlinitialization();

public static void CallLift(int curF) { }
}
class Lift extends Thread {
int IiftiD, curF, direction;
boolean[] toFloor, upFloor, downFloor;
Person{] getoffPerson, getonPerson;

public void AssignLift(int dir, int curF) { }
public void Move() { }

public void StopAt(int curF) { }
public void Enter(Person per) { }

}
Fig. 7 Definition of Controller and Lift

The code instantiating GUI is generated from the
graphical classes. The header files for the graphical
classes GController and GFloor are generated as in
Figure 8. The GController class has aggregation
relationship with GFloor class and contains gFloorList
objects of type GFloor class. In the GUllnitialization
method, the gFloorList objects are created as many as the
value “6” of the multiplicity of the GFloor. The GFloor
class has aggregation relationship with GLift, GPerson,
GUpButton, GDownButton and GFloorButton classes.
The GFloor class contains gLift, gPerson, gUpButton,
gDownButton and gFloorButton objects of types GLift,

GPerson, GUpButton, GDownButton and GFloorButton
classes, respectively. The number of these objects is
decided to the value of the multiplicity of the
corresponding classes. The GUIInitialization method is
executed when receiving the corresponding message
from Controller.

In the object diagram having graphical classes, there is
no information about the body codes of the event
methods. The body codes of the event methods can be
generated after finding information in the extended state
diagrams.

class GContoller {
public static GFloor][] gFloorList;

public static void GUIInitialization () {
gFloorList = new GFloor{6};
for (inti=0;i<86;i++)
gFloorList]i] = new GFloor(i),

}

class GFloor extends Panel {
int floorlD;
GLift gLift]];
GUpButton gUpButton:
GDownButton gDownButton;
GFloorButton gFloorButton[};

public GFloor(int floor) {
floorlD = floor;

for (inti=0;i<3;i++}{
gLiftfi] = new GLift(floor);
add (gLiffi]), }
for (inti=0;i<3;i++){
gFloorButton(i] = new GFioorButton(floor);
add (gFloorButton[i]); }
gUpButton = new GUpButton(floor);
gDownButton = new GDownButton(floor);
add (gUpButton); add (gDownButton);

Fig. 8 Definition of GController and GFloor

B. Generating event methods

The information shown in the extended state diagrams
is used to generate event methods of the classes. If the
event in the extended state diagram is an internal one, the
body code of the event method contains a method call
which executes the associated action. If the event in the
extended state diagram has a guarded transition, the body
code of the event method contains the following method
calls after checking the guard condition. Method calls to
execute 1) the exit action of the current state, 2) the
actions related to the transition, 3) the entry action of the
new state and 4) the activities of the new state. For
example, in the state diagram of Figure 9, the body code
for event method eventl first calls action3 which is exit
action in statel. Next, it calls action] related to eventl,
and then calls action4 which is entry action. Finally, it
calls activity2 in state2.

To be able to execute the generated body code of the
event method, it is necessary to generate the body code
of the methods that are called from inside event methods.
We use icon transformations to define body code of these
methods. For example, the event method StopAt in

International Journal of KIMICS, Vol. 6, No. 3, September 2008

283

Figure 6 checks the guard condition StopAtNeeded and
calls FloorButtonOff, OpenDoor, GetOffCall, ArriveCall
and CloseDoor methods. Figure 10 shows the body code
for event method StopAt after using the icon
transformations. The FloorButtonOff method displays
icon transformation FloorButtonOffT of the
GFloorButton type. Considering relationship links of the
object diagram containing graphical classes, we use
standard navigation expression, “GController.gFloor
List[curF].gFloorButton[liftiD]. Display (“FloorButton
OffT”).” The expression to call the method in the
graphical classes must start from GController class. The

ArriveCall method calls Arrive method of the Floor class.

We use navigation expression of “Controller.floorList
[curF].Arrive(curF).” The expression to call the method
in the original classes must start from Controller class.
The Display is an animation method which displays the
icon transformations. Executing this code produces
animation for event method StopAt.

(F statet) T state2
. do:activity! eventl[condition)/ action] do : activity2

i entry / action2 entry / action4
_ exit/ action3 _ exit/action5)

public void event1() {
if {condition) {
action3(});

action1§

action4();
activity2();

v

!
Fig. 9 Body code of the eventl

public void StopAt(int curF) {
if (StopAtNeeded()) {

GController.gFloorList[curF].
gFloorButton[liftID]. Display("FioorButtonOffT");

GController.gFloorList[curF].
gLift[liftID]. Display("OpenDoorT");

Controller.liftList{liftID].
getoffPerson[curF]. GetOff (curF,liftID);

Controller.floorList[curF]. Arrive(curF);

GController.gFloorList[curF].
gLift[liftID].Display("CloseDoorT");

Fig. 10 Body code of the StopAt

IV. Generating animation

For generating animation, the generated header files,
the code instantiating GUI and event methods are used.
When the main method of the Controller class is
executed, the objects of the Floor and Lift are initialized,
and GUIInitialization message is sent to the GController
class for creating GUI components. The number of the
initialized objects is decided according to the values of
multiplicity in the object diagram having graphical
classes. The GController object represents itself as in
Figure 11. Figure 12 shows the snapshot of the animation
for the lift problem.

To make the system interactive, each GFloor
object contains up/down buttons at right in Figure 11,
except ground and top GFloor objects. These buttons
are clicked by user with mouse.

When the user clicks up/down buttons, the Floor and
GFloor objects create a new Person and GPerson objects,
respectively. Then the method LineUp of the Floor class
is called. The Floor object adds new Person objects to
the list of persons already waiting at the floor. The
destination floor for a Person object is randomly
determined when the object is newly created. If the user
clicks up button, when the LineUp is executed, it is
animated that up request button is illuminated. Then
Floor object sends the CallLift message to the Controller.
When the CallLift is executed, the Controller sends the
AssignLift message to each of the Lift objects asking its
convenience for servicing the request and assigns a lift to
floor pressed up/down request button. If the Lift object is
assigned, run method is executed and Move method is
called. When Move is executed, it animates the lift
moving between the floors. During moving between the
floors, the Lift object calls StopAt method and checks
guard condition StopAtNeeded. If StopAtNeeded
condition is satisfied, the body code of StopAt method is
executed. When StopAt is executed, it animates the floor
button inside the lift being reset and the door of the lift
being opened. Then GetOff message is sent to Person
object and Arrive message is sent to Floor object. Finally
the action closing the door of the lift is animated. When
GetOff is executed, it is animated that persons get off in
the lift. When Arrive is executed, it animates the up or
down request button being reset, and GetOn message is
sent to Person object. When GetOn is executed, it
animates the persons getting on the lift, and Enter
message is sent to Lift object. When Enter is executed, it
animates the floor button which is corresponded to
destination floor for a Person object being illuminated. If
the Lift object has any request, Move method is called
repeatedly.

Fig. 12 Snapshot of the animation

284 Suck-Tae Joung : A Study on lconic Animation based on Object Modeling Technique

V. Related works

A method for the visual requirement specifications is
discussed in [11]. It only works for elements of the
system that are easier to visualize, such as the data flow
of the system. They are specified by using VRDL. We
perform animation of the flow of control represented by
the state diagrams. In [12], the behavior of a system is
simulated by executing the production rules combined
with icon animation. We perform animation by executing
the event methods whose body code are generated by our
system. In [13], only textual information is displayed and
describes the behavior of the system without any
animation. In [14], it presented an interface toolset for
constructing and using iconic interfaces for interactive
workspaces. We animate the behavior of the system by
using the icon transformations.

VI. Conclusion

We proposed the iconic animation from the software
requirement specifications based on the OMT
methodology. The iconic animation is performed by the
GUI components and executing event methods which
contain icon transformations. Through animation, it
becomes easy to understand the software requirement
specifications and to examine the correctness of the
software requirement specifications at the analysis stage.

REFERENCES

[1] M. Rumbaugh, J. Blaha and W. Premerlani, Object-
oriented Modeling and Design. Prentice-Hall, 1991.

[2] Rational Rose, Rational Software Corporation,
http://www.rational.com/.

[3] D. Harel and E. Gery, “Executable object modeling
with statecharts,” Proc. 18th International Conf. on
Software Engineering, IEEE, pp. 246-257, 1996.

[4] Thomas Nocke, Stefan Schlechtweg and Heidrun
Schumann, “Icon-based Visualization using Mosaic
Metaphors,“ Proc. Ninth International Conference
on Information Visualization, pp. 103-109, 2005.

[5] Joung, S. Ali and J. Tanaka, “Automatic animation
from the requirement specification based on object
modeling technique,” Proc. International
Symposium on Future Software Technology
(ISFST-97), pp. 133-139, 1997.

[6] Broy. M, “Requirements and design specification of
distributed systems: the lift problem,” Proc.
International Conference on Distributed Computing
Systems, pp. 164-173, 1988.

{71 J. Rumbaugh. “Controlling code,” Journal of Object-
oriented Programming, pp. 25-30, May 1993.

[8] J. Ali and J. Tanaka, “Generating executable code
from the dynamic model of omt with concurrency,”
Proc. International Conference on IASTED, 2(5),
1997.

[9] M. Hirakawa, M. Tanaka and T. Ichikawa, “An
iconic programming system, hi-isual,” IEEE
Transactions on Software Engineering, 16(10), pp.
1178-1184, 1990.

[10]S. K. Chang, “Visual languages: A tutorial and
survey,” IEEE software, pp. 29-39, January 1987.
[11] A. Ohnishi, “A visual software requirements
specification technique,” Transaction of Information
Processing Society of Japan (in Japanese), 36(5), pp.

1183-1191, May 1995.

[12] R. St-Denis, “Specification by example using
graphical animation and a production system,” Proc.
IEEE HICSS, 2, pp. 237-246, 1990.

[13] P. Hsia and A. T. Yaung, “Screen-based scenario
generator: A tool for scenario-based prototyping,”
Proc. IEEE HICSS, 2, pp. 455-461, 1988.

[14] Jacob T. Biehl and Brian P. Bailey, “A Toolset for
Creating Iconic Interfaces for Interactive
Workspaces,” Lecture Notes in Computer Science,
Vol. 3585, 2005.

Suck-Tae Joung

received the B.S. degree in
Computer Science from Chonnam
National University in 1989 and
M.S. and Ph.D. degrees in
Computer Engineering of from
Tsukuba University, Japan, in
1996 and 2000, respectively. In
2001, he joined the Division of Electrical Electronic and
Information Engineering, Wonkwang University, where he is
presently professor. His research interest is in the area of
Visual System and Information Communication.

