Abstract
Photoluminescence properties of $SrTiO_3$:Sm red phosphors synthesized by solid state reaction method were studied under 254 nm excitation. Emission bands at 576 nm and 616 nm in heavily $Sm^{3+}$ ion doped $SrTiO_3$:Sm phosphors were observed, which were attributed to $^4G_{5/2}\rightarrow{^6}H_{5/2}$ and $^4G_{5/2}\rightarrow{^6}H_{7/2}$ transition of $Sm^{3+}$, respectively. The $Sm^{3+}$ ion concentration exhibiting the maximum emission intensity in the $SrTiO_3$:Sm was 30 mol%. The luminescence caused by $Sm^{3+}$ in the $SrTiO_3$:Sm phosphors was interpreted by the energy transfer between $Sm^{3+}$ ions.