Permeation Characteristics of Air and Water Vapor through ABS/filler Hybrid Films

ABS 복합 필름의 공기 및 수증기 투과 특성

  • Hong, Seong-Uk (Department of Chemical Engineering, Hanbat National University) ;
  • Ko, Young-Deok (Department of Chemical Engineering, Hanbat National University)
  • 홍성욱 (한밭대학교 공과대학 화학공학과) ;
  • 고영덕 (한밭대학교 공과대학 화학공학과)
  • Published : 2008.09.30

Abstract

In this study, graphite or zeolite 4A was mixed with poly(acrylonitrile-butadiene-strene) (ABS) to make hybrid films, and permeation characteristics of air and water vapor through these films were investigated. In all cases, gas permeabilities of hybrid films were lower than that of pure ABS films. The permeability decrease of oxygen was slightly larger than that of nitrogen, resulting in the little decrease of $O_2/N_2$ selectivity. In addition, the water vapor transfer rates (WVTR) of hybrid films were about half of ABS film's. The decrease of permeabilities may be owing to the increase of tortuosity for diffusion in hybrid films.

본 연구에서는 poly(acrylonitrile-butadiene-styrene) (ABS)에 carbon graphite와 zeolite 4A를 첨가하여 복합 필름을 제조하고 공기와 수증기 투과 특성을 살펴보았다. 복합 필름의 경우 모든 경우에서 순수한 ABS에 비해서 산소와 질소의 투과도가 감소하였으며, 산소의 투과도 감소가 질소의 투과도 감소보다 약간 큰 관계로 산소/질소 선택도도 조금 감소하였다. 또한, 수증기 투과도도 순수한 ABS에 비해서 약 1/2로 감소하였다. 이러한 투과도의 감소는 ABS에 filler를 첨가함으로 인하여 물질 확산 경로의 tortuosity가 증가했기 때문인 것으로 생각된다.

Keywords

References

  1. J. Won, H. C. Park, and Y. S. Kang, 'Polymeric Gas Separation Membranes', Polym. Sci. Tech., 10, 170 (1999)
  2. J. M. S. Henis, 'Commercial and Practical Aspects of Gas Separation Membranes', CRC Press, Boca Raton, FL (1994)
  3. S. A. Stern, 'Polymers for Gas Separations', J. Membr. Sci., 94, 1 (1994) https://doi.org/10.1016/0376-7388(94)00141-3
  4. L. M. Robeson, 'Correlation of Separation Factor versus Permeability for Polymeric Membranes', J. Membr. Sci., 62, 165 (1991) https://doi.org/10.1016/0376-7388(91)80060-J
  5. L. M. Robeson, W. F. Borgoyne, M. Langsam, A. C. Savoca, and C. F. Tien, 'High Performance Polymers for Membrane Separation', Polymer, 35, 4970 (1994) https://doi.org/10.1016/0032-3861(94)90651-3
  6. B. D. Freeman, 'Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes', Macromolecules, 32, 375 (1999) https://doi.org/10.1021/ma9814548
  7. J. M. S. Henis and M. K. Tripodi, 'The Development of Gas Separating Membranes', Science, 220, 4592 (1983)
  8. P. H. Abelson, 'Synthetic Membranes', Science, 244, 1421 (1989) https://doi.org/10.1126/science.244.4911.1421
  9. C. Liu and C. R. Martin, 'Composite Membranes from Petrochemical Synthesis of Ultra Thin Polymer Membranes', Nature, 352, 50 (1991) https://doi.org/10.1038/352050a0
  10. M. R. Anderson, B. R. Mattes, H. Reiss, and R. B. Kaner, 'Conjugated Polymer Films for Gas Separation', Science, 252, 1412 (1991) https://doi.org/10.1126/science.252.5011.1412
  11. T. Kajiyama and H. Kikuchi, 'Novel Polymer/ Liquid Crystalline Composite Membrane with Unique Permselective Characteristics', J. Membr. Sci., 36, 243 (1988) https://doi.org/10.1016/0376-7388(88)80021-8
  12. J. S. Park, J. W. Rhim, B. G. Park, S. H. Kong, and S. Y. Nam, 'Preparation and Gas Barrier Properties of Chitosan/Clay Nanocomposite Film', Membrane Journal, 15, 247 (2005)
  13. Y. J. Choi and H. K. Lee, 'Separation of Hydrogen-Nitrogen Gas Mixtures by PTMSPSilica- PEI Composite Membranes', Membrane Journal, 14, 304 (2004)
  14. J. S. Park, J. W. Rhim, H. S. Goo, I. H. Kim, and S. Y. Nam, 'Membrane Application of Polymer/ Layered Silicate Nanocomposite', Membrane Journal, 15, 255 (2005)
  15. J. M. Duval, A. J. B. Kemperman, B. Folkers, M. H. V. Mulder, G. Desgrandchamps, and C. A. Smolders, 'Preparation of Zeolite Filled Glassy Polymer Membranes', J. Appl. Polym. Sci., 54, 409 (1994) https://doi.org/10.1002/app.1994.070540401
  16. T. M. Gur, 'Perrmselectivity of Zeolite Filled Polysulfone Gas Separation Membranes', J. Membr. Sci., 93, 283 (1994) https://doi.org/10.1016/0376-7388(94)00102-2
  17. M. G. Suer, N. Bag, and L. Yilmaz, 'Gas Permeation Characteristics of Polymer-Zeolite Mixed Matrix Membranes', J. Membr. Sci., 91, 77 (1994) https://doi.org/10.1016/0376-7388(94)00018-2
  18. I. F. J. Vankelcom, E. Maerckx, M. Luts, and J. B. Uytterhoven, 'Incorporation of Zeolites in Polyimide Membranes', J. Phys. Chem., 99, 13187 (1995) https://doi.org/10.1021/j100035a023
  19. M. Moadded and W. J. Koros, 'Gas Transport Properties of Thin Polymeric Membranes in the Presence of Silicone Dioxide Particles', J. Membr. Sci., 125, 143 (1997) https://doi.org/10.1016/S0376-7388(96)00251-7
  20. S. P. Nunes, K. V. Pienemann, K. Ohlrogge, A. Alpers, M. Keller, and A. T. N. Pires, 'Membranes of Poly(ether imide) and nanodispersed silica', J. Membr. Sci., 157, 219 (1999) https://doi.org/10.1016/S0376-7388(98)00379-2
  21. M. Anson, J. Marchese, E. Garis, N. Ochoa, and C. Pagliero, 'ABS copolymer-activated carbon mixed matrix membranes for $CO_2/CH_4$ eparation', J. Membr. Sci., 243, 19 (2004) https://doi.org/10.1016/j.memsci.2004.05.008
  22. Z. Zhang, 'Permaebility and Morphology of Poly(cis-butadiene)/Ester-Ether Liquid Crystal Composite Membranes', J. Polym. Sci: Polym. Phys. Ed., 38, 1833 (2000) https://doi.org/10.1002/1099-0488(20000715)38:14<1833::AID-POLB10>3.0.CO;2-X