PS-b-PHEA 디블록 공중합체와 폴리비닐알콜을 이용한 수소이온 전도성 가교형 전해질막의 제조

Preparation of Proton Conducting Crosslinked Membranes From PS-b-PHEA Diblock Copolymer and Poly(vinyl alcohol)

  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Seo, Jin-Ah (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Roh, Dong-Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Jung-Tae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Joo-Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Makea, Sanjeev (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 발행 : 2008.09.30

초록

폴리스티렌-폴리히드록시에틸 아크릴레이트(PS-b-PHEA) 디블록 공중합체와 폴리비닐알콜(PVA)을 1 : 1 무게비로 블렌딩하여 수소 이온 전도성 가교형 고분자 전해질막을 개발하였다. 특히 술포석시닉산(SA)를 사용하여 디블록 공중합체의 PHEA 블록과 PVA와 가교반응을 시켰고, 이를 FT-IR 분광법을 이용하여 분석하였다. 이온교환능(IEC)은 SA 함량이 증가함에 따라 계속하여 증가하여 0.95 meq/g까지 도달하였고, 이는 전해질막에 이온 그룹수가 증가하기 때문이다. 하지만, 함수율은 SA 함량이 20 wt%까지는 증가하다 그 이상에서는 감소하였다. 또한 수소 이온 전도도도 SA 함량에 따라 증가하여 20 wt% SA농도에서 0.024 S/cm의 최대값을 나타내었다. 함수율과 수소이온전도도의 이러한 경향은 SA 함량이 증가함에 따라 이온 그룹의 수가 증가하는 효과와 가교가 증가하는 효과가 서로 경쟁적으로 일어나기 때문으로 생각된다.

This work demonstrates the preparation of proton conducting crosslinked polymer electrolyte membranes by blending polystrene-b-poly(hydroxyethyl acrylate) (PS-b-PHEA) and poly(vinyl alcohol) (PVA) at 1 : 1 wt ratio. The PHEA block of the diblock copolymer was crosslinked with PVA using sulfosuccinic acid (SA) via the esterification reaction between -OH of membrane and -COOH of SA, as confirmed by FT-IR spectroscopy. Ion exchange capacity (IEC) continuously increased from 0.14 to 0.91 meq/g with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. In contrast, the water uptake increased up to 20.0 wt% of SA concentration above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.024 S/cm at 20.0 wt% of SA concentration. The maximum behavior of water uptake and proton conductivity is considered to be due to competitive effect between the increase of ionic sites and the crosslinking reaction according to the SA concentration.

키워드

참고문헌

  1. P. E. Trapa, B. Huang, Y.-Y. Won, D. R. Sadoway, and A. M. Mayes, 'Block Copolymer Electrolytes Synthesized by Atom Transfer Radical Polymerization for Solid-State, Thin-Film Lithium Batteries', Electrochem. Solid-State Letters, 5, A85 (2002) https://doi.org/10.1149/1.1461996
  2. S. W. Kuo, C. H. Wu, and F. C. Chang, 'Thermal Properties, Interactions, Morphologies, and Conductivity Behavior in Blends of Poly(vinylpyridine)s and Zinc Perchlorate', Macromolecules, 37, 192 (2004) https://doi.org/10.1021/ma035655+
  3. J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, N. G. Park, and Y. S. Kang, 'Dye-Sensitized Nanocrystalline Solar Cells Based on Composite Polymer Electrolytes Containing Fumed Silica Nanoparticles', Chem. Commun., 14, 1662 (2004)
  4. J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, 'Role of Polymer Matrix in Polymer/Silver Complexes for Structure, Interactions, and Facilitated Olefin Transport', Macromolecules, 36, 6183 (2003) https://doi.org/10.1021/ma034314t
  5. J.-H. Choi, P.-H. Kang, Y.-M. Lim, J.-Y. Sohn, J.-H. Shin, C.-H. Jung, J.-P. Jeun, and Y.-C. Nho, 'Preparation and Characterization of Poly(styrenesulfonic acid)-grafted Fluoropolymer Membrane for Direct Methanol Fuel Cell', Korean Membr. J., 9, 52 (2007)
  6. L. Depre, M. Ingram, C. Poinsignon, and M. Popall, 'Proton conducting sulfon/sulfonamide functionalized materials based on inorganicorganic matrices', Electrochim. Acta, 45, 1377 (2000) https://doi.org/10.1016/S0013-4686(99)00346-1
  7. C. H. Park, C. H. Lee, Y. S. Chung, and Y. M. Lee, 'Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell', Membrane Journal, 16, 241 (2006)
  8. D. J. Kim, B.-J. Chang, C. K. Shin, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Preparation and Characterization of Fluorenyl Polymer Electrolyte Membranes Containing PFCB Groups', Membrane Journal, 16, 16 (2006)
  9. S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, 'Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)', J. Membr. Sci., 233, 93 (2004) https://doi.org/10.1016/j.memsci.2004.01.004
  10. S.-L. Chen, J. B. Benziger, A. B. Bocarsly, and T. Zhang, 'Photo-Cross-Linking of Sulfonated Styrene- Ethylene-Butylene Copolymer Membranes for Fuel Cells', Ind. Eng. Chem. Res., 44, 7701 (2005) https://doi.org/10.1021/ie050015b
  11. Z. Li, J. Ding, G. P. Robertson, and M. D. Guiver, 'A Novel Bisphenol Monomer with Grafting Capability and the Resulting Poly(arylene ether sulfone)s', Macromolecules, 39, 6990 (2006) https://doi.org/10.1021/ma061054h
  12. J. R. Varcoe, R. C. T. Slade, E. L. H. Yee, S. D. Poynton, D. J. Driscoll, and D. C. Apperley, 'Poly(ethylene-co-tetrafluoroethylene)-Derived Radiation-Grafted Anion-Exchange Membrane with Properties Specifically Tailored for Application in Metal-Cation-Free Alkaline Polymer Electrolyte Fuel Cells'., Chem. Mater., 19, 2686 (2007) https://doi.org/10.1021/cm062407u
  13. J. H. Choi, C. K. Yeom, J. M. Lee, and D. S. Suh, 'Nanofiltration of Electrolytes with Charged Composite Membranes', Membrane Journal, 13, 29 (2003)
  14. C. Manea and M. Mulder, 'Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications', J. Membr. Sci., 206, 443 (2002) https://doi.org/10.1016/S0376-7388(01)00787-6
  15. C. Heitner-Wirguin, 'Recent advances in perfluorinated ionomer membranes: structure, properties and applications', J. Membr. Sci., 120, 1 (1996) https://doi.org/10.1016/0376-7388(96)00155-X
  16. D. K. Lee, Y. W. Kim, J. K. Choi, B. R. Min, and J. H. Kim, 'Preparation and Characterization of Proton Conducting Crosslinked Diblock Copolymer Membranes', J. Appl. Polym. Sci., 107, 819 (2008) https://doi.org/10.1002/app.27122
  17. Y. W. Kim, J. K. Choi, J. T. Park, and J. H. Kim, 'Proton Conducting Poly(vinylidene fluoride-cochlorotrifluoroethylene) Graft Copolymer Electrolyte Membranes', J. Membr. Sci., 313, 315 (2008) https://doi.org/10.1016/j.memsci.2008.01.015
  18. Z. Wang, H. Ni, C. Zhao, X. Li, T. Fu, and H. Na, 'Investigation of sulfonated poly(ether ether ketone sulfone)/heteropolyacid composite membranes for high temperature fuel cell applications', J. Polym. Sci. B: Polym. Phys., 44, 1967 (2006) https://doi.org/10.1002/polb.20841
  19. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, 'Fabrication and characterization of heteropolyacid ($H_3PW_{12}O_{40}$)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications', J. Membr. Sci., 212, 263 (2003) https://doi.org/10.1016/S0376-7388(02)00507-0
  20. T. Z. Fu, C. J. Zhao, S. L. Zhong, G. Zhang, K. Shao, H. Q. Zhang, J. Wang, and H. Na, 'SPEEK/epoxy resin composite membranes in situ polymerization for direct methanol fell cell usages', J. Power Sources, 165, 708 (2007) https://doi.org/10.1016/j.jpowsour.2006.12.023
  21. J. K. Choi, D. K. Lee, Y. W. Kim, B. R. Min, and J. H. Kim, 'Composite Polymer Electrolyte Membranes Comprising Triblock Copolymer and Heteropolyacid for Fuel Cell Applications', J. Polym. Sci. B. Polym. Phys., 46, 691 (2008) https://doi.org/10.1002/polb.21390
  22. J. T. Park, K. J. Lee, M. S. Kang, Y. S. Kang, and J. H. Kim, 'Nanocomposite Polymer Electrolytes Containing Silica Nanoparticles: Comparison between Poly(ethylene glycol) and Poly(ethylene oxide) dimethyl ether', J. Appl. Polym. Sci., 106, 4083 (2007) https://doi.org/10.1002/app.26951
  23. J. H. Kim, J. Won, and Y. S. Kang, '$\pi$-Complexes of Polystyrene with Silver Salts and Their Use as Facilitated Olefin Transport Membranes', J. Polym. Sci. B: Polym. Phys. 42, 2263 (2004) https://doi.org/10.1002/polb.20106
  24. J. H. Kim, B. R. Min, K. B. Lee, J. Won, and Y. S. Kang, 'Coordination Structure of Various Ligands in Crosslinked PVA to Silver Ions for Facilitated Olefin Transport', Chem. Commun. 2732 (2002)
  25. J.-W. Rhim, H. B. Park, C.-S. Lee, J.-H. Jun, D. S. Kim, and Y. M. Lee, 'Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes', J. Membr. Sci., 238, 143 (2004) https://doi.org/10.1016/j.memsci.2004.03.030
  26. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, 'Preparation and characterization of crosslinked PVA/$SiO_2$ hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications', J. Membr. Sci., 240, 37 (2004) https://doi.org/10.1016/j.memsci.2004.04.010