Total Phenolic Contents, Radical Scavenging Capacities and Inhibitory Effects on Lipid Peroxidation and LDL Oxidation of Prunus persica Branch

  • Yi, Hyo-Seung (Medical Science Research Center for Cardiovascular Disease, Dongguk University) ;
  • Park, Won-Hwan (Medical Science Research Center for Cardiovascular Disease, Dongguk University) ;
  • Lim, Sun-Hee (College of Oriental Medicine, Dongguk University) ;
  • Moon, Jin-Young (College of Oriental Medicine, Dongguk University)
  • Published : 2008.10.25

Abstract

This study was undertaken to elucidate the antioxidant activity of the ethanol (EEPB) and water (WEPB) extracts of Prunus persica branches. The extracts contained a high phenolic content and revealed a potent hydrogen donating activity in DPPH scavenging assay. Compared to $\alpha$-tocopherol, EEPB (p < 0.001) and WEPB (p < 0.05) significantly inhibited $FeCl_2$-ascorbic acid-induced lipid peroxidation, and also exhibited potent antiradical activities against hydroxyl radical, superoxide anion, nitric oxide and peroxynitrite. In copper- and AAPH-mediated human low-density lipoprotein (LDL) oxidation systems, the extracts demonstrated a strong antioxidant function by metal chelating, rather than direct scavenging, action. Furthermore, EEPB at 5 ${\mu}g/mL$ concentration showed 80.77% inhibition of the electrophoretic mobility of LDL, compared to 77.69% for ascorbic acid and 76.92% for BHT. These results suggest that PB branch extracts may protect against oxidative stress-induced diseases.

Keywords

References

  1. Madamanchi, N.R., Vendrov, A., Runge, M.S. Oxidative stress and vascular Disease. Arterioscler Thromb Vasc Biol. 25: 29-38, 2005
  2. de Vries, H.E., Buchner, B., van Berkel, T.J., Kuiper, J. Specific interaction of oxidized low-density lipoprotein with macrophage-derived foam cells isolated from rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 19: 638-645, 1999 https://doi.org/10.1161/01.ATV.19.3.638
  3. Tabata, T., Mine, S., Kawahara, C., Okada, Y., Tanaka, Y. Monocyte chemoattractant protein-1 induces scavenger receptor expression and monocyte differentiation into foam cells. Biochem Biophys Res Commun. 305: 380-385, 2003 https://doi.org/10.1016/S0006-291X(03)00771-X
  4. Asmis, R., Begley, J.G., Jelk, J., Everson, W.V. Lipoprotein aggregation protects human monocyte-derived macrophages from OxLDL-induced cytotoxicity. J Lipid Res. 46: 1124-1132, 2005 https://doi.org/10.1194/jlr.M400485-JLR200
  5. Lee, J.H., Lee, B.W., Kim, J.H., Jeong, T.S., Kim, M.J., Lee, W.S., Park, K.H. pterocarpans from roots of Glycine max (L.) Merr. J Agric Food Chem. 54: 2057-2063, 2006 https://doi.org/10.1021/jf052431c
  6. Suarna, C., Wu, B.J., Choy, K., Mori, T., Croft, K., Cynshi, O., Stocker, R. Protective effect of vitamin E supplements on experimental atherosclerosis is modest and depends on preexisting vitamin E deficiency. Free Radic Biol Med. 41: 722-730, 2006 https://doi.org/10.1016/j.freeradbiomed.2006.05.013
  7. Gil, M.I., Tomás-Barberán, F.A., Hess-Pierce, B., Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J Agric Food Chem. 50: 4976-4982, 2002 https://doi.org/10.1021/jf020136b
  8. Kim, Y.K., Koo, B.S., Gong, D.J., Lee, Y.C., Ko, J.H., Kim, C.H. Comparative effect of Prunus persica L. BATSCH-water extract and tacrine (9-amino-1,2,3,4-tetrahydroacridine hydrochloride) on concentration of extracellular acetylcholine in the rat hippocampus. J Ethnopharmacol. 87: 149-154, 2003 https://doi.org/10.1016/S0378-8741(03)00106-5
  9. Suh, S.J., Koo, B.S., Jin, U.H., Hwang, M.J., Lee, I.S., Kim, C.H. Pharmacological characterization of orally active cholinesterase inhibitory activity of Prunus persicaL. Batsch in rats. J Mol Neurosc. 29: 101-107, 2006 https://doi.org/10.1385/JMN:29:2:101
  10. Fukuda, T., Ito, H., Mukainaka, T., Tokuda, H., Nishino, H., Yoshida, T. Anti-tumor promoting effect of glycosides from Prunus persica seeds. Biol Pharm Bull. 26: 271-273, 2003 https://doi.org/10.1248/bpb.26.271
  11. Hur, J. Dongeuibogam. Bupin Publishing. Seoul. p 758, 2007
  12. Kaur, G., Alam, M.S., Jabbar, Z., Javed, K., Athar, M. Evaluation of antioxidant activity of Cassia siamea flowers. J Ethnopharmacol. 108: 340-348, 2006 https://doi.org/10.1016/j.jep.2006.05.021
  13. Yokozawa, T., Chen, C.P., Dong, E., Tanaka, T., Nonaka, G.I., Nishioka, I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2 picrylhydrazyl radical. Biochem Pharmacol. 56: 213-222, 1998 https://doi.org/10.1016/S0006-2952(98)00128-2
  14. Lin, C.C., Wu, S.J., Chang, C.H., Ng, L.T. Antioxidant activity of Cinnamomum cassia. Phytother Res. 17: 726-730, 2003 https://doi.org/10.1002/ptr.1190
  15. Zou, Y., Kim, A.R., Kim, J.E., Choi, J.S., Chung, H.Y. Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) isolated from Brassica juncea. J Agric Food Chem. 50: 5884-5890, 2002 https://doi.org/10.1021/jf020496z
  16. Gotoh, N., Niki, E. Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochim Biophys Acta. 1115: 201-207, 1992 https://doi.org/10.1016/0304-4165(92)90054-X
  17. Sutherland, H., Khundkar, R., Zolle, O., McArdle, A., Simpson, A.W., Jarvis, J.C., Salmons, S. A fluorescence-based method for measuring nitric oxide in extracts of skeletal muscle. Nitric Oxide. 5: 475-481, 2001 https://doi.org/10.1006/niox.2001.0374
  18. Crow, J.P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide. 1: 145-157, 1997 https://doi.org/10.1006/niox.1996.0113
  19. Xu, M.Z., Lee, W.S., Han, J.M., Oh, H.W., Park, D.S., Tian, G.R., Jeong, T.S., Park, H.Y. Antioxidant and anti-inflammatory activities of N-acetyldopamine dimers from Periostracum Cicadae. Bioorg Med Chem. 14: 7826-7834, 2006 https://doi.org/10.1016/j.bmc.2006.07.063
  20. Yoon, M.A., Jeong, T.S., Park, D.S., Xu, M.Z., Oh, H.W., Song, K.B., Lee, W.S., Park, H.Y. Antioxidant effects of quinoline alkaloids and 2,4-di-tert-butylphenol isolated from Scolopendra subspinipes. Biol Pharm Bull. 29: 735-739, 2006 https://doi.org/10.1248/bpb.29.735
  21. Ioannides, C. Yoxall, V. Antimutagenic activity of tea: role of polyphenols. Curr Opin Clin Nutr Metab Care. 6: 649-656, 2003 https://doi.org/10.1097/00075197-200311000-00008
  22. Hogg, N., Darley-Usmar, V.M., Wilson, M.T., Moncada, S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J. 281: 419-424, 1992 https://doi.org/10.1042/bj2810419
  23. Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., Steinberg D. Modification of low-density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low-density lipoprotein phospholipids. Proc Natl Acad Sci USA. 81: 3883-3887, 1984