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1. Introduction

In this paper, we examine the effect of demand
variability in a capacity-constrained production—
inventory system with multiple items. We consider
a system where inventory is continuously reviewed
and controlled by a base-stock policy. Demand oc-
curs one unit at a time according to a renewal
process. Demand can be for one of A items pro-
duced by the system. Inventory for different items
are kept in separate buffers. Different holding and
backordering costs (or service levels) may be asso-
ciated with different items, If available, an order is
satisfied from stock, otherwise it is backlogged with
the production system. The production system has
a finite production rate and stochastic production
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times. Therefore, order lead times are load-de-
pendent and affected by the current size of the or—
der queue with the production system.

In contrast to systems with exogenous lead-
times, we show that variability in lead-time demand
actually decreases with demand variability. We also
show that higher demand variability leads to a
smaller fraction of total stock being devoted to
safety stock. More significantly, we show that a
sufficiently large increase in demand variability can
lead to the elimination of safety stocks altogether.
QOur results suggest that strategies used to reduce
lead-time demand variability would be less valuable
when demand variability is high.

The effect of demand variability has been studied
in the context of continuous review inventory sys-
tems with exogenous and stochastic lead times by
Song (19944, 1994b). She showed that for a partic-
ular definition of variability, the optimal cost and
base-stock levels increase with lead-time demand
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variability. In the context of a single period news-—
vendor problem, Gerchak and Mossman (1992)
showed that the optimal cost is increasing in de-
mand variability when variability is varied according
to a mean preserving transformation, although the
optimal cost may or may not increase with higher
variability. Gerchak and He (2003) analyzed the re-
lation between the benefits of inventory pooling and
the variability demand. They showed that the more
random the individual demands, in the sense of the
mean preserving transformation, the larger the
benefits from consolidating them. Using an example,
they show that such may not be the case for other
forms of increased variability.

Jemai and Karaesmen (2005) studied the effect of
demand variability on the performance of a make-
to-stock queue. They show that when order in-
ter-arrival times are ordered in a stochastic sense,
an increase in inter-arrival time variability leads to
higher base-stock levels and higher costs (in sec~
tion 3, we generalize this result to systems with
multiple items). The effect of variability in queue-
ing systems is widely studied. Higher variability is
generally associated with deterioration in perform-
ance (Wolff, 1989). Various stochastic orderings in-
volving queueing systems are discussed in Stoyan
(1983), Shaked and Shanthikumar (1994) and
Benjaafar et al. (2005).

The rest of the paper is organized as follows. In
section 2, we describe our model and characterize
the optimal base stock levels and the optimal cost.
In section 3, we examine the effect of demand vari-
ability on the distribution of lead-time demand. In
section 4, we consider the relation between safety
stocks and demand variability. In section 5, we offer
concluding comments.

2. Model Description

We consider a production—inventory system
where demand occurs one unit at a time according
to a renewal process with rate A. The inter-arrival
time between orders is a random variable denoted

by X, with AX)=1/A. Demand can be for one of A
items produced by the system. An order is for an
item of type / with probability p, where ~1,...,K
Separate inventory buffers are kept for each item.
If available, an order is always satisfied from buffer
stock. If not, the demand is backordered. The sys-
tem incurs a holding cost 4 per unit of inventory of
type 7 per unit time and a backordering cost b; per
unit of type s backordered per unit time.
Alternatively, a service level may be specified for
each item. The inventory buffer of each item is
managed according to a continuous review base-
stock policy with base-stock level s for item 7 This
means that the arrival of each new order triggers
the placement of a replenishment order with the
production facility. Replenishment orders at the
production facility are processed on a first come-
first served basis. The production facility can proc-
ess only one order at a time and orders that arrive
when the facility is busy must wait in a queue. We
assume that production times are r..d exponentially
distributed random variables with mean 1/4. In or-
der to ensure stability, we assume that p=A/p <1
where p is the utilization of the production facility.
When viewed in isolation, the number of orders at
the production facility forms a GI/M/1l queue. In
combination with the inventory buffers, our system
is an example of a make-to-stock queue (Buzacott
and Shanthikumar, 1993).

In our model items are not differentiated by proc-
essing times, although they may differ in features,
functionality, or components. This assumption is
satisfied in industries where different grades of the
same component are used to differentiate items
(e.g. the electronics and computer industries) and
manufacturing/assembly times are not significantly
affected by component. It is also satisfied in in-
dustries where products have been redesigned so
that the customization step is carried out late in the
production process and represents only a small
fraction of total production time. For our analysis,
the assumption of homogenous production times al~
lows us to isolate more readily the effect of the de-
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mand variability.

We assume that a base~stock policy consisting of
a vector s={s;#1,....A} is chosen so that the long
run expected total cost per unit time is minimized.
We denote this expected total cost by

X K

29)=22i(s) = LElwJ; +b,5] (1
where / and B are random variables equal in dis~
tribution to, respectively, the steady-state in-
ventory and backorder levels for each of the A
items and z{(s)=ElAa{+ biB;] when base stock level
siis used for item 7 Alternatively, a base-stock pol~
icy may be chosen so that only the holding cost
component of expected total expected is minimized
with a requirement that a specified service level for
each item is met. A service level can be specified
in several ways, including setting an upper bound on
the probability of a stock—~out or choosing a target
fill rate (the fraction of orders filled from stock).
In our case, since demand occurs one unit at a time,
the requirement on either the stock-out probability
or the fill rate can be specified as a constraint on
the probability that an arriving order of type-/ finds
no inventory on hand. This is also equivalent to
finding si units already on-order. If we let denote
the number of units on~order of type-7as seen by
an arrival, then the service level constraint can be
stated as :

Pr(fl@ 2s5;) <a;, (2)

where a€[0, 1] is the specified service level for
item 1.

In Lemma 1, we show how an optimal vector of
base-stock levels can be calculated for both
cost—-based and a service level-based models.

Lemma 1. /[n a multi-item production-inventory
system that fits the above description, the base
stock level for item I, 1 = 1, ..., K that minimizes ex—
pected total cost per umit time s given by

si= |s;). where

B
Inl v. 2
< n{y’ p} 3
"omlp]
7f=hi/(hi+bi) (4)
_ 2.8
r “1=a0-7) (5)

and B is the solution of the characteristic equation
A= l;”ew(l-ﬁ)d(;(z) (6)

where G is the distribution of order inter-arrival
times. When a service level is enforced, s; = [ s; ] ,

where

(M

In order to examine the effect of demand varia—
bility, we shall make use of stochastic comparisons
between different random variables. Since we are
interested in comparing distributions with the same
mean but with different higher moments, we shall
use the following definition of variability, which is
consistent with the increasing convex ordering of
random variables (Shaked and Shanthikumar, 1994).

Definition 1: We say that a random variable X is
more variable than a random variable Y, and we
write X2, if E[f(X)]2E[RY)] for all increasing
convex functions f.

Using the above definition, it is not difficult to
show that the following lemmas hold. Lemma 2 fol-
lows from our definition of variability. Lemma 3 is
borrowed from Wolff (1989).

Lemma 2: Let X and Y be two non-negative random
variables such that E(X)=E(Y), then X2,Y implies
EX)2E(Y'). Hence, we have X2,Y = C(X)=C(Y),
where C() denotes the coefficient of variation

Lemma 3: Consider two GIM/1 queuves with service
rate p and arrival rate A. The arrival process is re—
newal in both queues. Let X; § = 1, 2) denote a ran-
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dom variable that describes the inter-arrival times
associated with the arrival process to queue J. Then
Xi2.Xs implies Bi1=<Bs; where f; is the solution of

the characteristic equation §,= f e " (hﬁ’)dGJ(t)
0

and G; is the distribution of X;

We now use lemma 3 to show that higher demand
variability always leads to higher base-stock levels.
This generalizes the result obtained by Jemai and
Karaesmen (2005) to systems with multiple items
and service level constraints, as well as offer an al~
ternative proof for the single item case.

Lemma 4: Consider two GlI/M/I make-to-stock
queues with service rate u and arrival rate A. The
arrival process is renewal in both queues, with the
probability that an arriving customer is of type I be-
g p. Let X G = 1, 2) denote a random variable
that describes the inter-arrival times associated
with the arrival process to queue j. Then X;<.Xz
implies 57 <s7? and z(s"“)=z(s/?) for i=1,..., K,
where s’ refers to the optimal base stock level of
item 1 in queue j.

3. The Distribution of
Lead-time Demand

In this section, we examine the impact of demand
variability on the variability of lead-time demand.
The lead-time demand for an item of type-/is the
amount of type—r demand that arrives between the
time a type—/ order is placed and when that order
is delivered to the inventory buffer. This is equal
in distribution to the number of items of type- seen
upon completion at the production system by an or-
der of type-i Let D; denote the lead-time demand
for item-7 then it can be shown that:

P(D; = x;) = (1=r)r” (8)

Theorem 1: Consider two GlI/M/I make—to-stock
queues with service rate u and arrival rate A. The
arrival process is renewal in both queues, with the

probability that an arriving customer Is of type [ be-
ng p. Let X; G = 1, 2) denote a random variable
that describes the inter-arrival times associated
with the arrival process to queue j. Then X;<,.X»
implies C(D)>C(D?) where C(DY) refers to the
coefficient of variation of lead-time demand DY of
item i in queue j for 1 = 1,..., K

Proof: From (8), we have

GINER-NT)) 0] )
E(D )= Yl 0-ryi = o and
1-r

X;=

From which, we obtain

=1—ﬂj(l—17i)

; 1
c(pP)=—
(/) piB;

i

9

Since, by virtue of lemma 3, 8;<8; we have co®)

>C("). Hence proved. 1

With theorem 1, we have shown the surprising
result that higher demand variability induces small—-
er variability in lead-time demand. This occurs de-
spite the fact that both the mean and variance of
lead-time demand increase with variability (both
are increasing in 8. Note that the coefficient of
variation is strictly decreasing in p. This means that
items with a smaller demand rate experience higher
lead time demand variability. However, in the limit
case, we have 1[191102(0,-):1 for all values of i

Although higher demand variability has the effect
of reducing the variability in lead—-time demand for
every item type, it does not the have the same ef-
fect on the variability of the number of items on or-
der (that is, the number in queue + in-process at
the production system). As we show in the follow-
ing theorem, the effect of demand variability in this
case depends on the relative magnitude of each
item.

Theorem 2: Consider two GI/M/1 queues with serv-
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ice rate i1 and arrival rate A. The arrival process Is
renewal in both queues, with the probability that an
arriving customer is of type [ being pr. Let X; ¢ =
1, 2) denote a random variable that describes the
inter-arrival times associated with the arrival proc—
ess to queue j. Then X;<,Xz implies CIN)>CIN®)
if p<0.5, CNT)=CIN®) if pi=0.5 and CIN")XCIN®)
if p20.5 for i = 1,..., K, where CIN®) refers to the
coefficient of vanation of the number of items of
type i In system j (in queue + In process).

Proof: We have

)

ENDY = SO -y = 2 (i
= En o o R
and
E([Ni(j}]z)z 4 ‘ rfj)§+,}(f}}
Bj(l__ri(}) !

Using the above, we can now write lod (Mm) as:

'ﬁj +2Piﬂj'PiP

. 1
clwi=
pip

(10)

Taking the difference leads to

C2(N(I))*—C2(N,(2)) - (ﬂl ”ﬁQ)(ZPi ‘"l)
‘ pip

Since G;=£; we have:

i <052 C(V)2C(V?)
pi =055 C(N}) =C(V3)
pi >0.5= C(N}) <C(VP)

which completes our proof. [

Theorem 2 shows that an increase in demand
variability can either increase, decrease or leave
unchanged the variability in the number of items on
order for a particular type. From (10), we can also
show that CG(N)>(2-p)/p for p> 0.5, C(N)=(2- p/p
for p=0.5 and C*(N)>(2-p)/p for p>0.5. In the limit

case of very high variability, we have limC?*(¥,)=
e

(2-p)/p>1.

Although they have important implications to the
analysis of production-inventory systems, Theorems
1 and 2 are queueing results that are of independent
interest. They describe how variability in the arrival
process to a GI/M/1 queue affects the variability in
the number of customers observed either at an ar-
rival instant (theorem 1) or at a random instant
(theorem 2). In our setting, theorem 1 is of partic-
ular importance since it implies that with higher de-
mand variability there is less uncertainty regarding
lead-time demand. In turn, this suggests that strat-
egies, such as holding or aggregating demand, used
to cope with variability are less useful when demand
variability is high. In section 4, we show that this
intuition is indeed true.

It is not difficult to find instances of commonly
used demand distributions where the above resuits
apply. Consider, for example, the family of Gamma
distributions with parameter 1/t and A/t where £0.
If we let X be a random variable that describes the
inter-arrival time between orders, then AX)=1/4,
and Var(X)=t/A* so that the mean is constant but the
variance is increasing in £ Hence, the random vari-
able X, becomes more variable when ¢ increases.
More specifically, it can be shown that if 4<% then
X, <,X, for any &, £>0 (Stoyan 1989). In order

to examine the effect of demand variability on the
variability of lead-time demand, we can vary ¢ and
observe (D) and (AN). Equivalently, we can vary
the coefficient of variation of order inter-arrival
timesC, = O X;)=
AD) and AN).

A special case of a Gamma distribution is the

Vvt and observe its effect on

Erlang. A transformation that varies the number of
stages & while maintaining the same arrival rate A
can be shown to be consistent with the variability
ordering, with €, = v/1/k. In this case, varying &
allows us to vary C4 in the interval (0, 11.

It is also possible to consider more general
classes of distributions by using a mean preserving

transformation of the form
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0<r<t (1D

where Xis a random variable with mean A X)=1/A.
In this case, AX)=HX) and Var(X)=FVar(X) where
X; becomes again more variable as f increases. In
particular, we have C, = ((X,)=tC(X). The mean
preserving transformation can be shown to be con-
sistent with the variability ordering (Gerchak and
He, 2003).

In a GI/M/1 queue, a relationship between the pa-
rameter B and the coefficient of variation in in-
ter-arrival times, Cy can be obtained by consider-
ing the following well known upper bound on the
expected number of customers in the system (Wolff
1989):

E(N)=pi(1- ) (CY +p2)1201- pl-(-p)C5 /2 (12)

The bound is asymptotically sharp in heavy traf-
fic (p—1) and is exact for the M/M/1 and D/D/1
cases. Inequality (12) can be rewritten as

[2(L-p)/ p(1- A-1<C} (13)

where the left hand side can be interpreted as a
lower bound on Cs°. We can see that this lower
bound is increasing in £ and approaches < as —1.
Thus, 8 can be viewed, for fixed p, as an indicator
of demand variability.

4, Safety Stock

In this section, we examine the effect of demand
variability on safety stock. We initially limit our dis-
cussion to a cost-based model. Throughout, we
shall use the following definition of safety stock.

Definition 2: An item i is said to have positive safety
stock if the optimal base-stock level s for that
item satisfies the inequality: s; YE(D;), where E(D,)
is the expected lead-time demand for item i. We let
safety stock refer to the difference ssi'=s/~ E(D).

The above statement is in line with common defi-

nitions of safety stock. For example, Silver et al.
(1998) define safety stock as “as the average level
of the net stock just before a replenishment
arrives.” That is, safety stock is the amount left (on
average) after fulfilling lead-time demand.

In lemma 5, we show that the parameters 1}, B
p and p; define three regions: region A where we
produce to order, B where we produce to stock with
a positive safety stock, and C where we produce to
stock but do not carry any safety stock.

Lemma 5: Consider a muiti-item Gl/M/1 make-to-
stock queue with service rate p and arrival rate A.
The probability that an arriving customer IS
of tvpe-i is p. Then s/=21 if and only if
v, < x; = (p/B)r;  and ss;>0 if and only If

v <= (/B0

The proof follows from lemma 1 and definition 2.
Region A is defined by cases where the tuple (1},
B p p) satisfies Y x;, B satisfies Y;<x; and Y;<¢,
and C satisfies 1;<y; and 1>¢: These three regions
are illustrated in Figure 1. Figure 1 suggests that
an increase in G could lead to a shift from a
make-to~order to a make-to-stock mode of pro-
duction (a shift from A to Bor to O. It also suggests
that an increase in B could lead to a shift from the
region where we hold safety stock (B to the one
where we hold no safety stock (C). In theorems 3
and 4, we show that this is indeed the case. More
significantly, we show that in regions where we
hold safety stock, the fraction of total stock due to
safety stock decreases with variability.

1

7]

(73

Begent A, Nake20-008 (no stock)
a4

‘Region B: Make-to-stock (Rth port e Ay Rock)

02

[

0 [ 04 05 08 t
s

<Figure 1> Y7 and A on safety stock inventory
(p=0.3, ;=0.8)
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Theorem 3: Consider two GI/M/I make-to-stock
queues with service rate u and arrival rate A. The
arrival process is renewal in both queues, with the
probability that an arriving customer is of type [ be-
ng p. Let X (G = 1, 2) denote a random variable
that describes the inter-arrival times associated
with the arrival process to queue j. Then X;<.X»
implies #72¢ for i=1...K whenever s;% and
ss7%>0 , where d)fi) = ss:(’)/ S:(j).

An important implication of theorem 3 is that,
when safety stock is held (region B), the fraction of
the base stock due to safety stock is smaller in sys-
tems with higher demand variability. This effect is
illustrated in Figure 2 for a system with Gamma dis-
tributed demand, where G, is varied according to
the scheme described in section 3.

Before, we present our next result, we need the
following lemma.

Lemma 6: For fixed p, xy is increasing and convex
in B with limyx; =p,p and limx; = p, and ¢; is de-
J f—1

creasing in B with lim¢; =+ and lim¢;, =e *.
B0 -1

Proof: Noting that

Pip
Z‘ TR m————y
" 1-p0-p;)

it is straightforward to show that x; is increasing
and convex in £ and the above limits hold. For ¢,
we first show that In[¢] is decreasing in 8 This can
be verified by noting that

f(P)=nlg;]= --—-rilln[r‘ I 1n(-ﬁ )
=np
Since

P _lonhG)  p 1,
dp - “@-pa-p)* B

a result that follows from 1-r7+In{]1<0 for 0sn<
1, AP is non—decreasing in B In turn, this means
that ¢@; is decreasing in 8 The limits follow upon ap-
plication of 'Hopital's rule.

<Figure 2> The effect of demand variability on the
relative size of safety stock (0=0.8, ¥=0.1)

Theorem 4: Consider two GI/M/1 queues with serv-
ice rate u and arrival rate A. The arrival process is
renewal in both queues, with the probability that an
arriving customer is of type i being p.. Let X; (=1,
2) denote a random variable that describes the in-
ter-arrival times associated with the arrival process
to queue j such that

(1) Xi1<.X5 A

el

@ ¢ <5 < (p/B)Y and~ < (p/B)r
item i, N

}
for an

i)

(3) e <~ <(plB)r® and ~, > (p/B)r; * for
the same item |,
then ss@>ssi® with ss7®=0,

Theorem 4 means that a sufficiently large in-
crease in demand variability can lead to the elimi-
nation of safety stock. A graphical illustration of this
effect is shown in Figure 3 where an increase from
B4 to Bp leads to the elimination of safety stock.
Numerical results from a system with Gamma dis—
tributed demand are shown in Figure 4.

(&

X * X
o4 PO

I

<Figure 3> Increasing # from g4 to Bg eliminates
safety stock
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The above analysis can be extended to systems
with service level constraints. With a constraint on
the probability of backordering, the optimal base-
stock level is always greater than one and we al-
ways produce to stock. Therefore, the parameters
I, B p and pi define two regions, both make-to-
stock, one in which we hold safety stock and one
in which we do not. Within the region where we hold
safety stock, we can show that the fraction of total
stock due to safety stock is smaller when demand
variability is higher. We can also show that a suffi-
ciently large increase in demand variability can lead
to the elimination of safety stock.

12 14 16 18 ]

<Figure 4> Increasing demand variability eliminates
safety stocks (0=0.8, Y=0.5)

5. Conclusion

Using a simple model of a multi-item pro-
duction-inventory system, we explored the effect
of demand variability on various system
characteristics. Counter to immediate intuition, we
found that higher demand variability leads to a low-
er coefficient of variation in lead-time demand.
Since lead-time demand variability is what de-
termines the amount of inventory buffering that is
needed, we found that the fraction of safety stock
due to total stock decreases with demand varia-
bility, and in some cases reduces to zero.

Although an intuitive explanation for some of
these results is not easy, they appear to be related

to the endogenous nature of lead-time. Both de-

mand variability and capacity loading affect con-
gestion in the production system and therefore af-
fect supply lead-time, which in turn affects
lead-time demand. Although both the mean and
variance of lead-time demand increase with higher
demand variability and higher loading, their ratio
decreases in these same parameters. This appears
to play the crucial role in many of the observed
effects.
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<{Appendix>

Proof of Lemma 1. The conditional probability Pr(/N;
=n;l N=n), where N is the number of units of item
/that are on order and N=N+ Ng+ ...+ Ny has a bino-
mual distribution with probability p; Hence, we have:

{ . —n
. ,(Pi)"' t-p;)™

Pr(N;=nm | N=n)=———
(Ni=mi] ) nl{n—n)

Vn2n;
Noting that the distribution of the total numbers of
customers in a GI/M/1 queue is given by (Wolff
1989):

n=0

(1 -pp,

where Bis the solution of # = f e-u(i=p )dG(’), we
obtain

PN, =n)= S PN, =n; |N =

ne=ny

mPu(N = n)

& nl

n=n; 110 = 1; Sk

(= p )™ p(- pyp™,

form; 21,

which can be rewritten as

p-p p V'& .
] {l—pi) Z eI

Pr(N; =m;)=

Using the fact that

k

"Z kt(,, k) (1 _aa)m

leads to

PN, =y 2=B)(_pi )"i (BO-p))"
r(, n,) ﬁ U"p:‘ (1-ﬂ(1-—p;))"i+l

or equivalently as:

PN = :g -4 ){ @x’ )m'.
T(NV; = n;) ﬁ[l-ﬁ(l“Pi) 1- - p;)

Letting

ri:_.._.@i.__
1-40-p))

leads to

Pr(; =)= Z0-r )" (A1)
For N=0, we have
el <0)-1- Srlv=m)=1-(2). @)

Using (8) and (9), we can now obtain the expected
inventory for each item as

E(T) = 3(si —n) PN, = m) = 5; 7[ )a 7)(A.3)

;=

and the expected number of backorders as

s+l

E(B)= f(n -5;)Pr(N, —n)—E(i__

B;=5;

-~

i

}. (A.4)

The expected inventory cost can thus be rewritten
as:

N . rs,+l
Z’E"’{Si‘ﬂ(l J(l ¥ ):{+bl:,3(l )] (A.5)

which is clearly convex and separable in the s/s.

Hence, the optimal base stock level for each item
j can be obtained by finding s; that solves z(s)-
z(s~1) =0. This vields

= _mb’iﬂ!p]
S

Because the base stock level must be an integer, we
Ls; ]

In the case where a service level is enforced, we

*
have s; =

N —
minimize ‘z= Y h,B(I) subject to Pr(N,>s,)< o
i=1

for all #1,....K Noting that the distribution of num-
ber of customers in the queue at an arrival instant
Is given by:

p() =(1-PHP" forfi=1,.,0 (A.6)
it is not difficult to show that
5;—1
PN, 25;)=1= § (A=r)r =1 A7
ny=0

Since z is strictly increasing in the s/s, the con-
straints are always binding. Therefore, the optimal
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base-stock levels can be found by solving the
equality

Si —
=0

for ~1,... K
This leads to

_(_In(e;)
T Iy

Since the base stock level must be an integer that
meets the service level constraint, we have

si=1[s].

Proof of Lemma 4. From Lemma 1, s°% is the small-
est integer that satisfies the inequality

1
B;

S}’i,

which can be rewritten as

.. D
Note that both the quantities P ) and r’

i
1—/Bj(1 - b

are increasing in G. Since X;<.Xz implies G;<6; we

D 4
haal /)

have s; . Now note that z can be written

as

oy i () ) .
zi(J) =hisi(j) +(h +bi)£' L_____ ([ri(j)]si J __h,_____J
B l——r,w hi +b;

Suppose 57?=0, then we must also have si%= 0.
From A.5, we have

2
w_, p| P pl i )
Zi -—b,———(z)—Zb,—— 1 =Zz; .
Ji 1-v B 1—r,-()

On the other hand, if s,-’(2)>0, then

® . .
* * 16 ,(2) ,(2)
7P -0 2k +b»§[—-———m ][[r;‘”]‘* -1 jz 0,
1\1-r
which completes the proof.

Proof of Theorem 3. Rewriting ¢; as ¢=1-ED)/s/,
and using Lemma 3, it is sufficient to show that the
ratio A D)/s;" is increasing in 8 From the proof of
lemma 4, we know that s: is increasing in B. Since
s: = | s~,J , it is sufficient to show that
¢;= E(D))/s; is increasing in £ The ratio
E(D)/ s; can be written as follows:

~ _ rn(m) 7 In(ry)

4= = .
(1-r >1n<§y,~> (A= )linG,)+ (B~ In(p)]

Let
F(B)=r, and g(B)= [ln[% 7,}]‘1
Then

j - LBulB)

d - /(B) g(B).

Differentiating with respect to B, we obtain:

44 _[1- /B + /(AL B) fB[f(B)]
dp a-£(B) 1- f(B)

Since 0<A Q< 1, we have 1-£8+In[£P]1<0. Since
200, the first term on the left hand-side of the

g(p)+ g'(h)

inequality is positive. Since %l—<0 and
g(B)= m < 0, the second term is also
Til P ~

. .. de; .
strictly positive. Therefore, —(—iﬁ> 0, which com-
pletes the proof.



