Development, Validation, and Application of a Portable SPR Biosensor for the Direct Detection of Insecticide Residues

  • Yang, Gil-Mo (National Institute of Agricultural Engineering, Rural Development Administration) ;
  • Cho, Nam-Hong (National Institute of Agricultural Engineering, Rural Development Administration)
  • 발행 : 2008.10.31

초록

This study was carried out to develop a small-sized biosensor based on surface plasmon resonance (SPR) for the rapid identification of insecticide residues for food safety. The SPR biosensor module consists of a single 770 nm-light emitting diodes (LED) light source, several optical lenses for transferring light, a hemisphere sensor chip, photo detector, A/D converter, power source, and software for signal processing using a computer. Except for the computer, the size and weight of the sensor module are 150 (L)$\times$70 (W)$\times$120 (H) mm and 828 g, respectively. Validation and application procedures were designed to assess refractive index analysis, affinity properties, sensitivity, linearity, limits of detection, and robustness which includes an analysis of baseline stability and reproducibility of ligand immobilization using carbamate (carbofuran and carbaryl) and organophosphate (cadusafos, ethoprofos, and chlorpyrifos) insecticide residues. With direct binding analysis, insecticide residues were detected at less than the minimum 0.01 ppm and analyzed in less than 100 sec with a good linear relationship. Based on these results, we find that the binding interaction with active target groups in enzymes using the miniaturized SPR biosensor could detect low concentrations which satisfy the maximum residue limits for pesticide tolerance in Korea, Japan, and the USA.

키워드

참고문헌

  1. Len R. Report of a panel on the relationship between public exposure to pesticides and cancer. Cancer 80: 1887-1888 (1997) https://doi.org/10.1002/(SICI)1097-0142(19971115)80:10<1887::AID-CNCR2>3.0.CO;2-L
  2. Chun MH, Lee MG. Reduction of pesticide residues in the production of red pepper powder. Food Sci. Biotechnol. 15: 57-62 (2006)
  3. Kang SM, Lee MG. Fate of some pesticides during brining and cooking of Chinese cabbage and spinach. Food Sci. Biotechnol. 14: 77-81 (2005)
  4. USDA. Annual Summary for Pesticide Data Program. United States Department of Agriculture (USDA), Washington DC, USA. pp. 4-5 (2005)
  5. Nunes S, Skladal P, Yamanka H, Barcelo D. Determination of carbamate residues in crop samples by cholinesterase-based on biosensors and chromatographic techniques. Anal. Chim. Acta 362: 59-68 (1998) https://doi.org/10.1016/S0003-2670(97)00547-3
  6. Ni Y, Qiu P, Kokot S. Simultaneous viltammetric determination of four carbamate pesticides with the use of chemometrics. Anal. Chim. Acta 537: 321-330 (2005) https://doi.org/10.1016/j.aca.2004.12.080
  7. Nobuaki S, Tomoyuki T, Tomomi W, Keiko M, Toshihiko I, Takashi M, Yasukazu A, Saeko O, Osamu N, Stanley B. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide. Talanta 60: 733-745 (2003) https://doi.org/10.1016/S0039-9140(03)00139-5
  8. Kok FN, Hasirci V. Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor. Biosens. Bioelectron. 19: 661-665 (2004) https://doi.org/10.1016/j.bios.2003.07.002
  9. Suwansa-ard S, Kanatharana P, Asawatreratanakul P, Limsakul C, Wongkittisuksa B, Thavarungkul P. Semi disposable reactor biosensors for detecting carbamate pesticides in water. Biosens. Bioelectron. 21: 445-454 (2005) https://doi.org/10.1016/j.bios.2004.11.005
  10. Vakurov A, Simpson CE, Daly CL, Gibson TD, Millner PA. Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection. Biosens. Bioelectron. 20: 1118-1125 (2004)
  11. Vakurov A, Simpson CE, Daly CL, Gibson TD, Millner PA. Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection. II Immobilization and stabilization of acetylecholinesterase. Biosens. Bioelectron. 20: 2324-2329 (2005) https://doi.org/10.1016/j.bios.2004.07.022
  12. Andreou VG, Clonis YD. Novel fiber-optic biosensor based on immobilized glutathione S-transferase and sol-gel entrapped bromcresol green for the determination of atrazine. Anal. Chim. Acta 460: 151-161 (2002) https://doi.org/10.1016/S0003-2670(02)00250-7
  13. Choi JW, Lee WH. The development of fiber-optic biosensor for simultaneous detection of the pesticide residues in agricultural products. Agr. Res. Pro. Cent. Korea. pp. 68-83 (2002)
  14. Yang GM, Kang SW. SPR-based antibody-antigen interaction study for real time analysis of carbamate pesticide residues. Food Sci. Biotechnol. 17: 15-19 (2008)
  15. Dzantiev BB, Yazynina EV, Zherdev AV, Plekhanova YV, Reshetilov AN, Changc SC, McNeil CJ. Determination of the herbicide chlorsulfuron by amperometric sensor based on separation-free bienzyme immunoassay. Sensor Actuat. B-Chem. 98: 254-261 (2004) https://doi.org/10.1016/j.snb.2003.10.021
  16. Harris RD, Luff BJ, Wilkinson JS, Piehler J, Brecht A, Gauglitz G, Abuknesha RA. Integrated optical surface plasmon resonance immunoprobe for simazine detection. Biosens. Bioelectron. 14: 377-386 (1999) https://doi.org/10.1016/S0956-5663(99)00014-7
  17. Song SJ, Cho HK. Enzyme immunoassay for on-line sensing of the insecticide imidaclopird residues. J. Korean Soc. Agric. Mach. 28: 505-510 (2003)
  18. Xing WL, Ma LR, Jiang ZH, Cao FH, Jia MH. Portable fiber-optic immunosensor for detection of methsulfuron methyl. Talanta 52: 879-883 (2000) https://doi.org/10.1016/S0039-9140(00)00440-9
  19. Yang GM, Kang SW. Detection of multi-class pesticide residues using surface plasmon resonance based on polyclonal antibody. Food Sci. Biotechnol. 17: 547-552 (2008)
  20. Brasil PR, Nunes GS, Rodrigues TC, Andreescu S, Marty JL. Comparative investigation between acetycholinesterase obtained from commercial soures and genetically modified drosophila melanogaster application in amperometric biosensors for methaidophos pesticide detection. Biosens. Bioelectron. 20: 825-832 (2004) https://doi.org/10.1016/j.bios.2004.03.021
  21. Pogaenik L, Franko M. Detection of organophosphate and carbamate pesticides in vegetable samples by a photothermal biosensor. Biosens. Bioelectron. 18: 1-9 (2003) https://doi.org/10.1016/S0956-5663(02)00056-8
  22. Maria PX, Begona V, Maria DM, Maira CM, Baldini AF. Fiber optic monitoring of carbamate pesticides using galss with covalently bound chlorophenol red. Biosens. Bioelectron. 14: 895-905 (2000) https://doi.org/10.1016/S0956-5663(99)00066-4
  23. Cho H, Yoo S, Kong K. Cloning of a rice tau class GST isozyme and characterization of its substrate specificity. Pestic. Biochem. Phys. 86: 110-115 (2006) https://doi.org/10.1016/j.pestbp.2006.02.003
  24. Olawale O, Ikechukwu O. Glutathione S-transferase (GST) activity as a biomarker in ecological risk assessment of pesticide contaminated environment. Afr. J. Biotechnol. 6: 1455-1459 (2007)
  25. Razak CA, Salam F, Ampon K, Basri M, Salleh AB. Development of an ELISA for detection of parathion, carbofuran, and 2,4-dchlorophenoxyacetic aid in water, soil, vegetables, and fruits. Ann. NY Acad. Sci. 864: 479-484 (1998) https://doi.org/10.1111/j.1749-6632.1998.tb10363.x
  26. Chouteau C, Dzyadevych S, Durrieu C, Chovelon JM. A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens. Bioelectron. 20: 273-281 (2005)
  27. Kumar J, Jha SK, D'souza SF. Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposale biocomponent. Biosens. Bioelectron. 21: 2100-2105 (2006) https://doi.org/10.1016/j.bios.2005.10.012
  28. Marinella F, Damia B. Characterization of wastewater toxicity by means of a whole-cell bacterial biosensor, using Pseudomonas putida, in conjunction with chemical analysis. Fresen. J. Anal. Chem. 371: 467-473 (2001) https://doi.org/10.1007/s002160100925
  29. Kretschmann E, Reather H. Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. 23: 2135-2136 (1968)
  30. Mauriz E, Calle A, Manclús JJ, Montoya A, Escuela AM, Sendra JR, Lechuga LM. Single and multi-analyte surface plasmon resonance assays for simultaneous detection of cholinesterase inhibiting pesticides. Sensor Actuat. B-Chem. 118: 399-407 (2006) https://doi.org/10.1016/j.snb.2006.04.085
  31. Nakajima H, Harada Y, Aanno Y, Nakagama T, Uchiyama K, Imato T, Soh N, Hemmi A. Development of palm-sized differential plasmon resonance meter based on concept of prode. Sensor Actuat. B-Chem. 108: 893-898 (2005) https://doi.org/10.1016/j.snb.2004.12.103
  32. Rajan SC, Gupta BD. Surface plasmon resonance based fiber-optic sensor for the detection of pesticide. Sensor Actuat. B-Chem. 123: 661-666 (2007) https://doi.org/10.1016/j.snb.2006.10.001
  33. Wilson M, Nakane P. Immunofluorescence and Related Staining Techniques. Elsevier/North Holland BioMedical Press, Amsterdam, Netherlands. p. 215 (1978)
  34. Mouvet C, Amalric L, Broussard S, Lang G, Brecht A, Gauglitz G. Reflectometric interference spectroscopy for the determination of atrazine in natural water samples. Environ. Sci. Technol. 30: 1846-1851 (1996) https://doi.org/10.1021/es9503894
  35. Hemmia A, Imato T, Aoki Y, Sato M, Soh N, Asano Y, Akasaka C, Okutani S, Ohkubo S, Kaneki N, Shimada K, Eguchi T, Oinuma T. Development of palm-sized differential plasmon resonance meter based on concept of Sprode. Sensor Actuat. B-Chem. 108: 893-898 (2005) https://doi.org/10.1016/j.snb.2004.12.103
  36. Decher G. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210-211: 831-835 (1992) https://doi.org/10.1016/0040-6090(92)90417-A
  37. Johnsson B, Lofas S, Lindquist G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem. 198: 268-277 (1991) https://doi.org/10.1016/0003-2697(91)90424-R
  38. Higashi N, Takahashi M, Niwa M. Immobilization of DNA through intercalation at self-assembled monolayers on gold. Langmuir 15: 111-115 (1999) https://doi.org/10.1021/la9803427
  39. Golub ES, Green DR. Immunology: A Synthesis. Sinauer Associates, Sunderland, MA, USA. p. 531 (1991)
  40. Roitt IM, Delves PJ. Essential Immunology. Blackwell Scientific Publications, Oxford, UK. pp. 37-47 (2001)
  41. Dankwardt A. Immunochemical Assays in Pesticide Analysis. Sension GmbH, Augsburg, Germany. pp. 1-16 (2006)
  42. NAQS. Annual Report About Safe Agricultural Products for Pesticide Data Program. National Agricultural Products Quality management Service (NAQS). Seoul, Korea. pp. 5-6 (2005-2006)
  43. Paul J, Goulet G, Ricardo FA. Distinguishing individual vibrational fingerprints: Single-molecule surface-enhanced resonance raman scattering from one-to-one binary mixtures in langmuir-blodgett monolayers. Anal. Chem. 79: 2728-2734 (2007) https://doi.org/10.1021/ac062059f
  44. David W. The Immunoassay Handbook. 5th ed. Elsevier Press, Oxford, UK. pp. 286-287 (2005)
  45. Masuda T, Yasumoto K, Kiatabatake N. Monitoring the irradiationinduced conformational changes of ovalbumin by using monoclonal antibodies and surface plasmon resonance. Biosci. Biotech. Bioch. 64: 710-716 (2000) https://doi.org/10.1271/bbb.64.710
  46. Markgren PO, Schaal W, Hamalainen M, Karlen A, Hallberg A, Samuelsson B, Danielson UH. Relationships between structure and interaction kinetics for HIV-1 protease inhibitors. J. Med. Chem. 45: 5430-5439 (2002) https://doi.org/10.1021/jm0208370
  47. Nordin H, Jungnelius M, Karlsson R, Karlsson O. Kinetic studies of small molecule interactions with protein kinases using biosensor technology. Anal. Biochem. 340: 359-368 (2005) https://doi.org/10.1016/j.ab.2005.02.027
  48. Homola J. Surface Plasmon Resonance-based Sensors. Springer Berlin, Heidelberg, German. pp. 1221-1222 (2006)
  49. Xiaoping H, Daniel JB. Influence of Au particles on the photocurrent of TiO2 films. J. Electroceram. 16: 1385-3449 (2006)
  50. Quinn JG, O'Neill S, Doyle A, McAtamney C, Diamond D, MacCraith BD, O'Kennedy R. Development and application of surface plasmon resonance-based biosensors for the detection of cell-ligand interactions. Anal. Biochem. 281: 135-143 (2000) https://doi.org/10.1006/abio.2000.4564
  51. Chegel VI, Shirshov YM, Piletskaya EV, Piletsky SA. Surface plasmon resonance sensor for pesticide detection. Sensor Actuat. B-Chem. 48: 456-460 (1998) https://doi.org/10.1016/S0925-4005(98)00084-7
  52. KFDA. MRLs for Pesticides in Foods. Korea Food & Drug Administration (KFDA), Seoul, Korea. pp. 37-114 (2005)
  53. Tamura Y, Nagayama T, Takano I, Kobayashi M, Tateishi Y, Kimura N, Kitayama K, Ito M, Saito K. Survey of Pesticide Residues in Imported Crops (Organophosphorus and Organonitrogen Pesticides). Tokyo Metropolitan Research Laboratory of Public Health, Tokyo, Japan. pp. 107-111 (2001)