Batch and Fed-batch Production of Hyperthermostable $\alpha$-L-Arabinofuranosidase of Thermotoga maritima in Recombinant Escherichia coli by Using Constitutive and Inducible Promoters

  • Song, Jae-Yong (Department of Chemical Engineering, Chungbuk National University) ;
  • Keum, In-Kyung (Department of Food Science and Technology, Chungbuk National University) ;
  • Jin, Qing (Department of Food Science and Technology, Chungbuk National University) ;
  • Park, Jung-Mi (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Beom-Soo (Department of Chemical Engineering, Chungbuk National University) ;
  • Jung, Bong-Hwan (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Tae-Jip (Department of Food Science and Technology, Chungbuk National University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, Chungbuk National University)
  • 발행 : 2008.10.31

초록

A thermostable $\alpha$-L-arabinofuranosidases ($\alpha$-L-AFase) is an industrially important enzyme for recovery of L-arabinose from hemicellulose. The recombinant $\alpha$-L-AFase from Thermotoga maritima was expressed in Escherichia coli by using a constitutive pHCE or an inducible pRSET vectors. In batch fermentation, the constitutive expression system resulted in slightly faster growth rate (0.78 vs. 0.74/hr) but lower enzyme activity (2,553 vs. 3,723 units/L) than those of the induction system. When fed-batch fermentation was performed, biomass and enzyme activity reached the highest levels of 36 g/L and 9,152 units/L, respectively. The fed batch cultures performed superior results than batch culture in terms of biomass yield (4.62-5.42 folds) and enzyme synthesis (3.39-4.00 folds). In addition, the fed-batch induction strategy at high cell density resulted in the best productivity in cell growth as well as enzyme activity rather than the induction method at low cell density or the constitutive expression.

키워드

참고문헌

  1. Bezalel L, Shoham Y, Rosenberg E. Characterization and delignification activity of a thermostable ${\alpha}-L-arabinofuranosidase$ from Bacillus stearothermophilus. Appl. Environ. Microb. 40: 57-62 (1993)
  2. Gunata ZY, Brillouet JM, Voirin S, Baumes R, Cordonnier R. Purification and some properties of an ${\alpha}-L-arabinofuranosidase$ from Aspergillus niger. Action on grape monoterpenyl arabinofuranosylglucosides. J. Agr. Food Chem. 38: 772-776 (1990) https://doi.org/10.1021/jf00093a040
  3. Rahman AK, Koji MS, Shingo K, Takamizawa K. Substrate specificity of the alpha-L-arabinofuranosidase from Rhizomucor pusillus HHT-1. Carbohyd. Res. 338: 1469-1476 (2003) https://doi.org/10.1016/S0008-6215(03)00203-9
  4. Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB. Bifunctional family 3 glycoside hydrolases dorm barley with ${\alpha}-L-arabinofuranosidase$ and ${\beta}-D-xylosidase$ activity: Characterization, primary structures, and COOH-terminal. J. Biol. Chem. 278: 5377-5387 (2003) https://doi.org/10.1074/jbc.M210627200
  5. Saha BC. ${\alpha}-L-Arabinofuranosidases:$ Biochemistry, molecular biology, and applications in biotechnology. Biotechnol. Adv. 18: 403-423 (2000) https://doi.org/10.1016/S0734-9750(00)00044-6
  6. Beldman G, Schols HA, Piston SM, Searl-van Leeuwen MJF, Voragen AGJ. Arabinan and arabinan degrading enzymes. Adv. Macromol. Carbohyd. Res. 1: 1-64 (1997)
  7. Numan MT, Bhosle NB. Alpha-L-arabinofuranosidases: The potential applications in biotechnology. J. Ind. Microbiol. Biot. 33: 247-260 (2006) https://doi.org/10.1007/s10295-005-0072-1
  8. Choi AJ, Kim CJ, Cho YJ, Kim YH, Cha JY, Hwang JK, Kim IH, Kim CT. Characterization of polysaccharides obtained from purslane (Portulaca olerace L.) using different solvents and enzymes. Food Sci. Biotechnol. 16: 928-934 (2007)
  9. Rombouts FM, Voragen AGJ, Searle-van Leeuwen MJF, Geraeds CCJM, Schols HA, Plinik W. The arabinases of Aspergillus nigerpurification and characterization of two ${\alpha}-L-arabinofuranosidases$ and an $endo-1,5-{\alpha}-L-arabinase$. Carbohyd. Polym. 9: 25-47 (1988) https://doi.org/10.1016/0144-8617(88)90075-6
  10. Spagna G, Romagnoli D, Angela M, Bianchi G, Pifferi PG. A simple method for purifying glycosidases: ${\alpha}-L-Arabinofuranosidase$ and ${\beta}- D-glucopyranosidase$ from Aspergillus niger to increase the aroma of wine. Part I. Enzyme Microb. Tech. 22: 298-304 (1998) https://doi.org/10.1016/S0141-0229(97)00141-5
  11. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. LArabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374 (1996) https://doi.org/10.1016/S0026-0495(96)90117-1
  12. Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: A review. Bioresource Technol. 89: 17-34 (2003) https://doi.org/10.1016/S0960-8524(03)00033-6
  13. Zeikus J, Vielle C, Savachenko A. Thermozymes: Biotechnology and structure-function relationships. Extremophiles 2: 179-183 (1998) https://doi.org/10.1007/s007920050058
  14. Yoon HS, Keum IK, Han NS, Kim CH. Molecular cloning and characterization of a gene encoding ${\alpha}-L-arabinofuranosidase$ from Thermotoga maritima. Food Sci. Biotechnol. 13: 244-247 (2004)
  15. O'Connor GM, Sanchezriera F, Cooney CL. Design and evaluation of control strategies for high cell-density fermentations. Biotechnol. Bioeng. 39: 293-304 (1992) https://doi.org/10.1002/bit.260390307
  16. Ramirez DM, Bentley WE. Fed-batch feeding and induction policies that improve foreign protein-synthesis and stability by avoiding stress responses. Biotechnol. Bioeng. 47: 596-608 (1995) https://doi.org/10.1002/bit.260470512
  17. Akesson M, Karlsson EN, Hagander P, Axelsson JP, Tocaj A. Online detection of acetate formation in Escherichia coli cultured using dissolved oxygen responses to feed transients. Biotechnol. Bioeng. 64: 590-598 (1999) https://doi.org/10.1002/(SICI)1097-0290(19990905)64:5<590::AID-BIT9>3.0.CO;2-T
  18. Poo HR, Song JJ, Hong SP, Choi YH, Yun SW, Kim JH, Lee SC, Lee SG, Sung MH. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis $factor-{\alpha}$. Biotechnol. Lett. 24: 1185-1189 (2002) https://doi.org/10.1023/A:1016107230825
  19. Lee SY, Chang HN. Effect of complex nitrogen source on the synthesis and accumulation of PHB by recombinant E. coli in flask and fed-batch cultures. J. Environ. Polym. 2: 169-176 (1994) https://doi.org/10.1007/BF02067442
  20. Miller GL. Use of dinitrosalicylic acid reagent for determination reducing sugar. Anal Chem. 31: 426-428 (1959) https://doi.org/10.1021/ac60147a030
  21. Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22: 1399-1408 (2004) https://doi.org/10.1038/nbt1029
  22. Hockney RC. Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12: 456-463 (1994) https://doi.org/10.1016/0167-7799(94)90021-3
  23. Gomes J, Gomes I, Terler K, Gubala N, Ditzelmuller G, Steiner W. Optimization of culture medium and conditions for alpha-L-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb. Tech. 27: 414-422 (2000) https://doi.org/10.1016/S0141-0229(00)00229-5
  24. Song JY, Kim BS. Characteristics of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by Ralstonia eutropha NCIMB 11599 and ATCC 17699. Biotechnol. Bioproc. E. 10: 603-606 (2005) https://doi.org/10.1007/BF02932302
  25. Wang Y, Du P, Gan R, Li Z, Ye Q. Fed-batch cultivation of Escherichia coli YK537 (pAET-8) for production of phoA promoter-controlled human epidermal growth factor. Biotechnol. Bioproc. E. 10: 149-154 (2005) https://doi.org/10.1007/BF02932585
  26. Yarzabal A, Bastidas M, Avilan L, Cruz J, Puig J. Induction conditions for maximizing recombinant staphylokinase expression in Escherichia coli. Biotechnol. Lett. 19: 633-637 (1997) https://doi.org/10.1023/A:1018330613369
  27. Donovan RS, Robinson CW, Glick BR. Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 16: 145-154 (1996) https://doi.org/10.1007/BF01569997
  28. Shimatake H, Rosenberg M. Purified ${\gamma}$ regulatory protein cII positively activates promoters for lysogenic development. Nature 292: 128-132 (1981) https://doi.org/10.1038/292128a0
  29. Jobling MG, Palmer LM, Erbe JL, Holmes RK. Construction and characterization of versatile cloning vectors for efficient delivery of native foreign proteins to the periplasm of Escherichia coli. Plasmid 38: 158-173 (1997) https://doi.org/10.1006/plas.1997.1309
  30. Paik HD, Kim IG, Lee JH, Lee JH, Park KY, Ji GE, Jin TE, Rhim SL. Heterologous expression of ${\alpha}-amylase$ gene of Bifidobacterium adolescentis Int57 in Bacillus polyfermenticus SCD. Food Sci. Biotechnol. 16: 655-658 (2007)