DOI QR코드

DOI QR Code

DC마그네트론 스퍼터링법으로 PET 기판위에 저온 증착한 ITO박막의 비저항과 굽힘 저항성에 대한 RF인가의 영향

Effect of RF Superimposed DC Magnetron Sputtering on Electrical and Bending Resistances of ITO Films Deposited on PET at Low Temperature

  • 박미랑 (부산대학교 재료공학부) ;
  • 이성훈 (한국기계연구원 부설 재료연구소) ;
  • 김도근 (한국기계연구원 부설 재료연구소) ;
  • 이건환 (한국기계연구원 부설 재료연구소) ;
  • 송풍근 (부산대학교 재료공학부)
  • Park, Mi-Rang (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Sung-Hun (Surface Technology Research Center, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Do-Geun (Surface Technology Research Center, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Gun-Hwan (Surface Technology Research Center, Korea Institute of Materials Science (KIMS)) ;
  • Song, Pung-Keun (Department of Materials Science and Engineering, Pusan National University)
  • 발행 : 2008.10.31

초록

Indium tin oxide (ITO) films were deposited on PET substrate by RF superimposed DC magnetron sputtering using ITO (doped with 10 wt% $SnO_2$) target. Substrate temperature was maintained below $750^{\circ}C$ without intentionally substrate heating during the deposition. The discharge voltage of DC power supply was decreased from 280 V to 100 V when superimposed RF power was increased from 0 W to 150 W. The electrical properties of the ITO films were improved with increasing of superimposed RF power. In the result of cyclic bending test, relatively high mechanical property was obtained for the ITO film deposited with RF power of 75 W under DC current of 0.75 A which could be attributed to the decrease of internal stress caused by decrease in both deposition rate and plasma impedance.

키워드

참고문헌

  1. K. Noda, H. Sato, H. Itaya, M. Yamada, Jpn. J. appl. Phys., 42 (2003) 1 https://doi.org/10.1143/JJAP.42.1
  2. A. Kaijou, M. Ohyama, M. Shibata, K. Inoue, U. S. Patent No. 5, 972 (1999) 527
  3. H. Morikawa, M. Fujita, Thin Solid Films, 339 (1999) 309 https://doi.org/10.1016/S0040-6090(98)01156-0
  4. K. Tominaga, T. Yuasa, N. Hosokawa, Jpn. J. Appl. Phys., 24 (1985) 24 https://doi.org/10.1143/JJAP.24.24
  5. P. K. Song, Y. Shigesato, M. Kamei, I. Yasui, Jpn. J. Appl. Phys., 38 (1999) 2921 https://doi.org/10.1143/JJAP.38.2921
  6. S. Ishibashi, K. Nakamura, Y. Higuchi, T. Komatsu, Y. Murata, Y. Ota, U.S. Patent 5, 180, 476 (1993)
  7. Jay Lewis, "Material challenge for flexible organic devices", Materialstoday 9, 4, April (2006)
  8. Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. J. Chua, Thin Solid Films, 394 (2001) 202
  9. Cairns, D.R., R.P. Wittell, K. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, R. R. Newton, Appl. Phys. Letters, 78(11) (2000) 1425
  10. D. G. Kim, S. H. Lee, M. R. Park, Y. J. Jeong, G. H. Lee, P. K. Song, Solid State Phenomena, 124-126 (2007) 367 https://doi.org/10.4028/www.scientific.net/SSP.124-126.367
  11. K. E. Cheon, D. Y. Lee, Y. R. Cho, P. K. Song, J. Kor. Inst. Surf. Eng., 40, 6 (2007) 245 https://doi.org/10.5695/JKISE.2007.40.6.245
  12. T. Sasabayashi, N. Ito, E. Nishimura, M. Kon, P. K. Song, K. Utsumi, A. Kaijo, Y. Shigesato, Thin Solid Films, 445 (2003) 219 https://doi.org/10.1016/j.tsf.2003.08.047