Physicochemical Comparison of Two Different Shark Meats Used for Preparation of Dombaeki

돔배기용 상어육의 이화학적 성분 비교

  • Kim, Eun-Ok (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Yu, Myeong-Hwa (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Lee, Ki-Teak (Department of Food Science and Technology, Chungnam National University) ;
  • Kim, Seon-Bong (Department of Food Science and Technology, Pukyoung National University) ;
  • Choi, Sang-Won (Department of Food Science and Nutrition, Catholic University of Daegu)
  • 김은옥 (대구가톨릭대학교 식품영양학과) ;
  • 유명화 (대구가톨릭대학교 식품영양학과) ;
  • 이기택 (충남대학교 식품공학과) ;
  • 김선봉 (부경대학교 식품공학과) ;
  • 최상원 (대구가톨릭대학교 식품영양학과)
  • Published : 2008.10.31

Abstract

Dombaeki, a traditional salted shark meat, has been widely used as a customary religious food in the Daegu-Gyeongbuk area of Korea. Two different sharks, Sphyrna zygaena (SZ) and Isurus oxyrinchus (IO) are traditionally used to prepare Dombaeki. Chemical components, lipid classes, fatty acid levels, and sterol compositions of meats prepared from the two sharks were investigated. There were no significant differences in chemical composition between the two dried shark meats. Major amino acids in shark meat were leucine, lysine, arginine, proline, isoleucine, valine, phenylalanine, glutamic acid, and asparagine, which together accounted for about 40% of total amino acids. Levels of amino acids in IO meat were higher than in SZ meat. Major fatty acids in the two shark meats were palmitic ($C_{16:0}$), stearic ($C_{18:0}$), oleic ($C_{18:1}$), arachidonic ($C_{20:4}$), and docosahexanoic (DHA, $C_{22:6}$) acids, which accounted for about 80% of total fatty acids. Notably, IO meat showed higher amounts of DHA (31.8%) and eicosapentanoic acid (EPA, 1.8%) than did SZ meat. The two shark meats showed similar dry weight levels of total lipids, with triacylglycerols, free fatty acids, sterols, and phospholipidscomprising on average 5.0, 2.0, 13.0 and 63.0% of total lipids, respectively. The dominant classes of phospholipids were mainly phosphatidylcholine (PC) and phosphatidylethanolamine (PE). PC content in the two shark meats was higher than that of PE, although the differencewas not great. The major fatty acids in phospholipids were myristic, palmitoleic, stearic, and docosanoic acids. Total volatile basic nitrogen content and the pH of SZ meat were lower than those of IO meat, whereas the Hunter's 'a' and 'b' values of SZ meat were higher than those of IO meat. These results suggest that shark meat may be useful as a functional food to prevent several degenerative diseases.

경북 영천 특산물인 상어 '돔배기'의 고품질화 연구의 일환으로 먼저 영천에서 '돔배기' 원료로 널리 사용되고 있는 귀상어 및 청새리상어육의 이화학적 품질특성을 측정하여 비교한 결과는 다음과 같다. 청새리상어육의 수분 함량이 귀상어육보다 낮은 대신 조단백질, 조지방 및 회분의 함량은 다소 높았으나 건물중으로 환산하면 큰 차이가 없었다. 상어육의 주된 아미노산은 leucine(715.47 mg%), lysine (589.62 mg%), arginine(514.24 mg%), proline(382.64 mg%), isoleucine(326.29 mg%), valine(302.32 mg%), phenylalanine (283.32 mg%), glutamic acid(265.74 mg%), asparagine (256.64 mg%) 및 alanine(239.74 mg%)로서 전체 총 아미노산의 40% 차지하고 있었으며, 귀상어육은 proline(119.58 mg%)을 제외하고 주된 아미노산 및 필수아미노산의 함량은 청새리상어육보다 낮았다. 상어육의 주된 지방산 조성을 보면 palmitic, stearic, oleic, arachidonic 및 docosahexaenoic acids로서 귀상어육은 포화지방산 및 불포화지방산 비율이 거의 유사하였으나 청새리상어육은 불포화지방산 함량이 다소 높았으며, 아울러 DHA 함량이 귀상어육보다 높았다. 상어 지질류는 인지질 함량(약 65%)이 가장 높게 나타났으며, 그 다음으로 스테롤, 중성지방, 유리지방산 순으로 낮았고, 인지질은 레시틴 및 세팔린이 대부분 차지하고 있었으며, 주된 지방산은 myristic, palmitoleic, stearic 및 docosaheaenoic acids 이었고 그 함량은 상어 종류에 따라 큰 차이가 없었다. 마지막으로 청새리상어육은 귀상어육보다 총휘발염기성질소 함량과 pH가 다소 높았으나 색상이 밝고 연하였다.

Keywords

References

  1. Joo, D.S., Lee, J.K., Choi, Y.S., Cho, S.Y., Je, Y.K. and Choi, J.W. (2003) Effects of seatangle oligosaccharide drink on serum and hepatic lipids in rats fed a hyperlipidemic diet. J. Korean Soc. Food Sci. Nutr., 32, 1364-1369 https://doi.org/10.3746/jkfn.2003.32.8.1364
  2. Lahaye, M. (1991) Marine algae as sources of fibers contents in some sea vegetable. J. Sci. Food Agric., 54, 587-594 https://doi.org/10.1002/jsfa.2740540410
  3. Newton, I.S. (2000) Long chain fatty acids in health nutrition. In Seafood in Health and Nutrition, Shahidi F. Ed., Science Tech. Publishing St. John's Canada, p.15-28
  4. http://naver.com. Shark (2007)
  5. Nakamura, K., Iida, H., Nakamura, K. and Ishikawa, S. (1985) Changes in chemical composition of shark meat during storage and processing. Bull. Tokai Reg. Fish Res. Lab., 115, 17-22
  6. Project of Value-Added of Youngcheon Dombaeki. (2001) Youngcheon City, Gyeongbuk, Korea
  7. http://naver.com. Shark cuisine. (2007)
  8. Okland Hege, M.W., Stoknes, I.S., Remme, J.F., Kjerstad, M. and Synnes, M. (2005) Proximate composition, fatty acid and lipid class composition of the muscle from deep-sea teleosts and elasmobranchs. Comp. Biochem. Physiol. B, 140, 437-443 https://doi.org/10.1016/j.cbpc.2004.11.008
  9. Remme, J.F., Larssen, W.E., Bruheim, I., Sabo, P.C., Sabo, A. and Stoknes, I.S. (2006) Lipid content and fatty acid distribution in tissues from Portuguese dogfish, leafscale gulper shark and black dogfish. Comp. Biochem. Physiol. B, 143, 459-464 https://doi.org/10.1016/j.cbpb.2005.12.018
  10. Pugliese, P.T., Jordan, K., Cederberg, H. and Brohult, J. (1998) Some biological actions of alkylglycerols from shark liver oil. J. Altern. Complement Med., 4, 87-99 https://doi.org/10.1089/acm.1998.4.1-87
  11. Yoshimura, K., Terashima, M., Hozan, D., Ebato, T., Nomura, Y., Ishii, Y. and Shirai, K. (2000) Physical properties of shark gelatin compared with pig gelatin. J. Agric. Food Chem., 48, 2023-2027 https://doi.org/10.1021/jf990887m
  12. Cho, S.M., Kwak, K.S., Park, D.C., Gu, Y.S., Ji, C.I., Jang, D.H., Lee, Y.B. and Kim, S.B. (2004) Processing optimization and functional properties of gelatin from shark cartilage. Food Hydrocolloids, 18, 573-579 https://doi.org/10.1016/j.foodhyd.2003.10.001
  13. Huang, F. and Wu, W. (2005) Antidiabetic effect of a new peptide from Aqualus mitsukurii liver in streptozotocin-induced diabetic mice. J. Pharm., 57, 1575-1580 https://doi.org/10.1211/jpp.57.12.0007
  14. Jo, J.H., Do, J.R., Kim, Y.M., KIm, D.S., Lee, T.K. and Kim, S.B. (2005). Optimization of shark(Squatina oculata) cartilage hydrolysis for the preparation of chondroitin sulfate. Food Sci. Biotechnol., 14, 651-655
  15. Szostak, W.B. and Szostak-Wegierek, D. (2006) Health properties of shark oil. Przegl Lek., 63, 223-226
  16. Yuan, L., Yoshida, M. and Davis, P.F. (2006) Inhibition of pro-angiogenic factors by a lipid-rich shark extract. J. Med. Food, 9, 300-306 https://doi.org/10.1089/jmf.2006.9.300
  17. Deepa, S.S., Yamada, S., Fukui, S. and Sugahara, K. (2007) Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes. Glycobiology, 17, 631-645 https://doi.org/10.1093/glycob/cwm021
  18. Korea Food and Drug Administration. (2002) Food Standard Code (Appendix). Seoul, Korea, p.3-29
  19. Lee, Y.C., Kim, D.S., Kim, Y.D. and Kim, Y.M. (1990) Preparation of oyster(Crassostrea gigas) and sea mussel(Mytilus coruscus) hydrolyzates using commercial protease. Korean J. Food Sci. Technol., 22, 234-240
  20. Folch, J., Lees, M. and Sloane Stanley, G.H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226, 497-509
  21. Metcalf, L.D., Schimtz, A.A. and Pleka, J.R. (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analyses. Anal. Chem., 38, 514-515 https://doi.org/10.1021/ac60235a044
  22. Lee, J.H., Cho, K.H., Lee, K.T. and Kim, M.R. (2005) Antiatherogenic effects of structured lipid containing conjugated linoleic acid in C57BL/6J mice. J. Agric. Food Chem., 53, 7296-7301
  23. Choi J.H., Woo J.W., Lee Y.B. and Kim S.B. (2005) Changes in an ammonia-like odor and chondroitin sulfate contents of enzymatic hydrolysates from Longnose skate(Rasa rhina) cartilage as affected by pretreatment methods. Food Sci. Biotechnol., 14, 645-650
  24. Rural Development Administration & Rural Nutrition Institute. (2002) Food composition table. Sangroksa, Suwon, Gyeonggido, p.160-165
  25. Rural Development Administration & Rural Nutrition Institute. (2002) Food composition table. Sangroksa, Suwon, Gyeonggido, p.124-126
  26. Kwon, J.H., Park, G.H., Park, Y.K., Lee, K.T., Cho, S.H. and Hwang, K.T. (2008) Lipids. In: Food Chemistry, Shinkwang Press, Seoul, Korea, p.132-135
  27. Suyama, M. and Tokuhiro, T. (1954) Urea content and ammonia formation of the muscle of cartillaginous fishes. Bull. Jap. Soc. Sci. Fish, 19, 1003-1006 https://doi.org/10.2331/suisan.19.1003
  28. Haard, N.F. and Simpson, B.K. (2000) Seafood enzymes. pp 167-190, Marcel Dekker, New York USA
  29. Botta, J.R., Lauder, J.T. and Jewer, M.A. (1984) Effect of methodology on total volatile basic nitrogen(TVB-N) determination as an index of quality of fresh atlantic cod(Gadus morhua). J. Food Sci., 49, 734-736 https://doi.org/10.1111/j.1365-2621.1984.tb13197.x