DOI QR코드

DOI QR Code

Effects of Supplemental Synbiotics Composed of Anaerobic Bacteria, Yeast and Mold on the Aerobic Stability of Total Mixed Ration for Cattle

혐기성 박테리아, 효모 및 곰팡이로 제조된 synbiotics의 첨가가 축우용 완전혼합사료의 호기적 안전성에 미치는 영향

  • Lee, Shin-Ja (Division of Applied Life Science(BK21 Program), Graduate School Gyeongsang National University) ;
  • Shin, Nyeon-Hak ( Division of Applied Life Science(BK21 Program), Graduate School Gyeongsang National University) ;
  • Jung, Ho-Sik (Hanyang Feed Industrial Company limited) ;
  • Hyun, Jong-Hwan ( Division of Applied Life Science(BK21 Program), Graduate School Gyeongsang National University) ;
  • Moon, Yea-Hwang (Department of Animal Science & Biotechnology, Jinju National University) ;
  • Lee, Sang-Suk (Department of Animal Science & Biotechnology, Sunchon National University) ;
  • Lee, Sung-Sill (Division of Applied Life Science(BK21 Program), Graduate School Gyeongsang National University)
  • 이신자 (경상대학교 응용생명과학부(BK 21)) ;
  • 신년학 (경상대학교 응용생명과학부(BK 21)) ;
  • 정호식 (한양사료공업주식회사) ;
  • 현종환 (경상대학교 응용생명과학부(BK 21)) ;
  • 문여황 (진주산업대학교 동물생명과학과) ;
  • 이상석 (순천대학교 동물자원과학과) ;
  • 이성실 (경상대학교 응용생명과학부(BK 21))
  • Published : 2008.10.30

Abstract

This study was conducted to investigate the effects of supplementation of synbiotics manufactured with anaerobic bacteria, yeast and mold on preservation of total mixed ration (TMR) by exposing days. Eight treatments were composed of untreated synbiotics(US), bacterial synbiotics (BS), yeasty synbiotics (YS), moldy synbiotics (MS), bacterial and mouldy synbiotics (BMS), yeasty and moldy synbiotics (YMS), bacterial and yeasty synbiotics (BYS), and bacterial, yeasty and moldy synbiotics (BYMS). After 7 days of anaerobic fermentation, fermented-TMRs were exposed to the air during 1, 3, 5, 7, 14 and 21 days. One hundred forty four (8 treatments${\times}$6 days${\times}$3 replications) fermented-TMRs were manufactured by vinyl bag ($43\;cm{\times}58\;cm$). Although no significant differences in the activities of carboxymethylcellulase, xylanase and amylase were observed among treatments, theirs acivities were seemed to increase by treatment of BYS or YMS containing yeast. Total bacterial and mold counts also decreased in the treatments containing yeast. Potential pathogenic bacteria were less detected in BYS and BMYS for E. coli, BMYS and YS for Salmonella, and BMS and BMYS for Shigella than those of the other treatments, MS was, however, contaminated easier than US by pathogenic bacteria. From above results, synbiotics containing facultative anaerobic yeast have effects for preservation of TMR fermented anaerobically. Particularly, BMYS treatment having good results in nutrient contents, dry matter loss and pathogenic bacteria amounts was a resonable synbiotics for preservation of the fermented-TMR.

본 시험은 혐기성 박테리아, 효모 및 곰팡이로 제조한 Synbiotics를 TMR에 첨가하여 발효시킨 후, 개봉하여 공기에 노출시킨 기간에 따른 보존성에 미치는 영향을 알아보기 위하여 수행되었다. 처리구는 무처리 대조구인 US구, 혐기성 박테리아와 prebiotic으로 만든 BS구, 혐기성 효모와 prebiotic로 구성된 YS구, 혐기성 곰팡이와 prebiotic으로 구성된 MS구, 혐기성 박테리아와 혐기성 곰팡이 그리고 prebiotic로 만든 BMS구, 혐기성 효모와 혐기성 곰팡이 그리고 prebiotics 로 만든 YMS구, 혐기성 박테리아와 혐기성 효모 그리고 prebiotics로만든 BYS구, 마지막으로 혐기성 박테리아, 효모 그리고 곰팡이 복합물과 prebiotics로 구성된 BMYS구로서 총 8 처리구로 나누었다. 개봉 후 노출 기간(1, 3, 5, 7, 14 및 21일)별 3반복으로 총 144개의 bag을 공시사료로 제조하였다. CMCase, xylanase 및 amylase의 평균 활성은 통계적 유의차는 없었으나 효모가 첨가된 BYS구 및 YMS구에서 좋은 편이었고, 총 세균수에서도 효모가 첨가된 구(YMS, BYS)에서, 곰팡이 수에서도 효모 첨가구(YMS, BMYS, BYS)에서 낮은 경향이었다. 병원성 균인 E. coli는 BYS구와 BMYS구, Salmonella균은 BMYS구와 YS구, 그리고 Shigella 균은 BMS와 BMYS구에서 대체로 낮았으나, MS구에서는 대조구보다도 모든 병원균에 더 많이 오염된 것으로 나타났다. 이상의 결과들을 살펴볼때, 혐기성 효모 첨가구(BYS, YMS, BMYS)가 저장성에서 효과가 있는 것으로 나타났으며, 특히 모든 미생물을 혼합한 BMYS구에서 영양소 함량과 건물 감량 및 병원성균 수 등에서 좋은 결과를 나타내어 혐기발효 TMR의 보존에 유리할 것으로 판단된다.

Keywords

References

  1. American Public Health Association. 1992. Standard methods for the examination of dairy products. 16th eds. APHA Inc. Washington DC.
  2. Beak, T. and F. Gross. 1964. Ursachen der unterschiedlichen Habarkeit von Gaerfutter. Das Wirtschftseigene Futter. 10, 298-312.
  3. Cussen, R. F., R. J. Merry, A. P. Williams and J. K. S. Tweed. 1995. The effect of additives on the ensilage of forage of differing perennial ryegrass and white clover content. Grass Forage Sci. 50, 249-258. https://doi.org/10.1111/j.1365-2494.1995.tb02320.x
  4. De Man, J. C., M. Rogosa and M. E Sharpe. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bact. 23, 130-135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  5. Driehuis, F., S. J. W. H. Oude EIferink and P. G. Van Wikselaar. 1999b. Lactobacillus buchneri improves aerobic stability of laboratory and farm scale whole crop maize silage but does not affect feed intake and milk production of dairy cows, pp. 106-107. In Proceedings of the 12th International Silage Conferenceed. Pauly, T. Uppsala: Swedish University of Agricultural Sciences.
  6. Driehuis, F., S. J. W. H. Oude EIferink and S. F. Spoelstra. 1999a. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J. Appl. Microbiol. 87, 583-594. https://doi.org/10.1046/j.1365-2672.1999.00856.x
  7. Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics. 11, 1-42. https://doi.org/10.2307/3001478
  8. EI Hassan, S. M., C. J. Newbold, I. E. Edwards, J. H. Topps and J. R. Wassace. 1996. Effect of yeast culture on rumen fermentation, microbial protein flow from the rumen and live-weight gain in bulls given high-cereal diets. J. Anim. Sci. 62, 43-48. https://doi.org/10.1017/S1357729800014296
  9. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bact. 66, 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  10. Gibson, G. R. and B. M. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401-1412.
  11. Gomez-Alarcon, R. A., C. Dudas and J. T. Huber. 1990. Influence of cultures of Aspergillus oryzae on rumen and total tract digestibility of dietary components. J. Dairy Sci. 73, 703-710. https://doi.org/10.3168/jds.S0022-0302(90)78723-1
  12. Ha, J. K., S. S. Lee, Y. S. Moon and C. H. Kim. 2005. Ruminant Nutrition and physiology. pp. 154, Seoul National University press.
  13. Han, S. W., Lee, K. W., Lee, B. D. and C. G. Sung. 1999. Effect of feeding Aspergillus oryzae culture on fecal microflora, egg qualities, and nutrient metabolizabilities in laying hens. Asian-Aus. J. Anim. Sci. 12, 417-421. https://doi.org/10.5713/ajas.1999.417
  14. Hara, S., M. Itoh. and Y. Ohyama. 1979. Aerobic deterioration of silages changes in temperature, gas metabolism, heat production and microflora. Jpn. J. Zootech. Sci. 50, 549-556
  15. Harris, B. Jr., H. H. Van Horn, K. E. Manookian, S. P. Marshal, M. J. Taylor, and C. J. Wilcox. 1983. Sugarcane silage, sodium hydroxide and steam pressure-treated sugarcane bagasse, corn silage, cottonseed hulls, sodium bicarbonate, and Aspergillus oryzae product in complete rations for lactating cows. J. Dairy Sci. 66, 1474-1485. https://doi.org/10.3168/jds.S0022-0302(83)81962-6
  16. Holdman, L. V., E. P. Coto and W. E. C. Moore. 1977. Anaerobic laboratory manual (4th eds), Virginia Polytech. Inct. and State Univ. Blackburg, Virginia, USA.
  17. Keady, T. W. J. and J. J. Murphy. 1996. Effects of inoculant Treatment on ryegrass silage fermentation, digestibility, rumen fermentation. and performance of lactating dairy cattle. Grass Forge Sci. 51, 232-241. https://doi.org/10.1111/j.1365-2494.1996.tb02058.x
  18. Kellems, R. O., A. Lagerstedt and M. V. Wallentine. 1990. Effect of feeding Aspergillus oryzae fermentation extract or Aspergillus oryzae plus yeast culture plus mineral and vita min supplement on performance of Holstein cows during a complete lactation. J. Dairy Sci. 73, 2922-2928. https://doi.org/10.3168/jds.S0022-0302(90)78980-1
  19. Kelly, D. 1998. Probiotics in young and newborn animals. J. Anim. Feed Sci. 7, 15-23. https://doi.org/10.22358/jafs/69952/1998
  20. Kim, J. W., J. S. Park. 1997. Industrial effective microorganisms(III). Classification, Characterization and Industrial use of Yeast. Kor. Jour. of Microbiololgy and Biotechnology. 10, 26-33.
  21. Ko, Y. D. 1999. Silage manufacturing strategy of Rumen Animal. Sun Jin. pp30-31.
  22. Kumar, U., Sareen, V. K. and S. Singh. 1997. Effect of yeast culture supplement on ruminal microbial populations and metabolism in buffalo calves fed a high roughage diet. J. Sci Food Agric. 73, 231-236. https://doi.org/10.1002/(SICI)1097-0010(199702)73:2<231::AID-JSFA710>3.0.CO;2-D
  23. Kung, Jr. L. and N. K. Ranjit. 2001. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 84, 1149-1155. https://doi.org/10.3168/jds.S0022-0302(01)74575-4
  24. Line, J. E., J. S. Bailey, Cox, N. A., N. J. Stem and T. Tompkins. 1998. Effect of yeast supplemented feed on Salmonella and Campylobacter populations in broilers. Poultry Sci. 77, 405-410. https://doi.org/10.1093/ps/77.3.405
  25. Marcus, K. M., J. T. Huber and S. Cramer. 1986. Influence of feeding Vita during hot weather on performance of lactating cows in a large dairy herd. J. Dairy Sci. 69 (Suppl. 1), 188 (Abstr.).
  26. Miller, G. L., R. Blum, W. E. Giennon and A. L. Burton. 1960. Measurement of Carboxymethylcellulase activity. Anal. biochem. 1, 127-132. https://doi.org/10.1016/0003-2697(60)90004-X
  27. Mitsuoka, T. 1980. Zonaisaikinno Sekai. Sobunsha 21, 1-34.
  28. Mountfort, D. O. and R. A. Asher. 1988. Production of $\alpha$- amylase by the ruminal anaerobic fungus Neocallimastix frontalis. Appl. Environ. Microbiol. 54, 2293-2299.
  29. Nicholson, J. W. G., R. E. McQueen, E. Chan and R. S. Bush. 1991. Forage conservation round bales or silage bage: effect on the characteristics and performance. Anim. Sci. 71, 1167-1180.
  30. Nisbet, D. J., D. E. Corrier, C. M. Scanlan, A. G. Hollister, R. C. Beier and J. R. Deloach. 1993. Effect of defined continuous- flow derived bacterial culture and dietary lactose on Salmonella colonization in broiler chicks. Avian Disease 37, 1017-1025. https://doi.org/10.2307/1591908
  31. Nishino, N., H. Wada, M. Yoshida and H. Shiota. 2004. Microbial counts, fermentation products, and aerobic stability of whole crop corn and a Total Mixed Ration ensiled with and Without inoculation of Lactobacillus casei or Lactocacillus buchneri. J. Dairy Sci. 87, 2563-2570. https://doi.org/10.3168/jds.S0022-0302(04)73381-0
  32. Ogimoto, K. and S. Imai. 1981. Atlas of Rumen Microbiology. Japan. Scientific Societies Press. Tokyo, Japan.
  33. Ok, J. U., S. M. Lee, S. J. Lee, J. H. Lim, T. W. Kang, H. Y. Jung, Y. H. Moon and S. S. Lee. 2006. Effect of Yeast Addition in Rice Straw Silage Fermentation. J. Anim. Sci. & Technol. (Kor.) 48, 691-698. https://doi.org/10.5187/JAST.2006.48.5.691
  34. Oude Elferink, S. J. W. H., J. Krooneman, J. C. Gottschal, S. F. Spoelstra, F. Faber and F. Driehuis. 2001. Anaerobic aconversion of lactic acid to acetic acid and 1, 2 propanediol by Lactocacillus buchneri. Appl. Environ. Microbiol. 67, 125-132. https://doi.org/10.1128/AEM.67.1.125-132.2001
  35. Pearce, P. D. and T. Bauchop. 1985. Glycosidases of the rumen anaerobic fungus Neocallimastix frontalis grown on cellulosic substrates. Appl. Environ. Microbiol. 49, 1265-1269.
  36. Pettersson, D., H. Graham and p. Amen. 1989. Enzyme supplementation of broiler chickens. Ani. Prod. 51, 399-404.
  37. Phillips, M. W. and G. L. R. Gordon. 1988. Suger and polysaccharide fermentation by anaerobic fungi from Australia, Britian and New Zealand. Biosystems 21, 377-383.
  38. Ranjit. N. K., C. C. Taylor and L. King. 2002. Effect of Lactobacillus buchneri 40788 on the fermentation, aerobic stability and nutrituve value of maize silage. Grass Forage Sci. 57, 73-81. https://doi.org/10.1046/j.1365-2494.2002.00304.x
  39. Roper, K. B. and D. I. Fennell. 1965. The Genus Aspergillus. pp 357-404, The Williams and Wilkins Co., Baltimore, MD.
  40. Rose, A. H. 1980. Rent research on industrially important strains of Saccharomyces cerevisiae. In Skimmer, F. A., S. M. Passmore and R. R. Danenpor (eds.), Biology and Activities of yeasts. The Society for Applied Bacteriology Symposium Series 9, 103. Academic Press, London. UK.
  41. SAS. 1999. SAS/STAT software for PC. Release 8.01. SAS institute Inc., Cary, N. C., U.S.A.
  42. Sniffen, C. J. 1986. Natural growth stimulators: Micronutrient requirements of the rumen and the role of the yeast cultures in the rumen. Altech's Second Annual Symposium Lecington, Kentucky, USA.
  43. Stokes, M. R. 1992. Effects of an enzyme mixture, an inoculant, and their interaction on silage fermentation and dairy production. J. Dairy Sci. 75, 764-773. https://doi.org/10.3168/jds.S0022-0302(92)77814-X
  44. Weinberg, Z. G. and R. E. Muck. 1996. New trends in development and use of inoculants for silage. FEMS Microbiol. Rev. 19, 53-68. https://doi.org/10.1111/j.1574-6976.1996.tb00253.x
  45. Wiedmeier, R. D., M. J. Arambel and J. L. Walters. 1987. Effect of yeast culture and Aspergillus oryzae fermentation extract in ruminal characteristics and nutrient digestibility. J. Dairy Sci. 70, 2063-2068. https://doi.org/10.3168/jds.S0022-0302(87)80254-0
  46. Williams, A. G. and C. G. Orpin. 1987. Polysaccharide-degrading enzymes formed by three species of anaerobic rumen fungi grown on a range of carbohydrate substrates. Can. J. Microbiol. 33, 418-426. https://doi.org/10.1139/m87-071
  47. Woolford, M. K. 1990. The detrimental effects of air on silage. J. Appl. Bacteriol. 68, 101-116. https://doi.org/10.1111/j.1365-2672.1990.tb02554.x
  48. Woolford, M. K. and J. E. Cook. 1978. A note on the effect on the aerobic deterioration of maize silage on the manipulation of the microflora by means of antibiolotics. Anim. Feed Sci. Technol. 3, 89-94. https://doi.org/10.1016/0377-8401(78)90026-3