DOI QR코드

DOI QR Code

폐암의 유전자 치료법을 위한 암특이적인 PRC1 프로모터

A Cancer-specific Promoter for Gene Therapy of Lung Cancer, Protein Regulator of Cytokinesis 1 (PRC1)

  • 조영화 (주성유전자치료기술센터) ;
  • 윤혜진 (인제대학교 뇌과학기술연구소) ;
  • 권희충 (한국원자력의학원) ;
  • 김희종 (주성유전자치료기술센터) ;
  • 조성하 (주성유전자치료기술센터) ;
  • 강봉수 (주성유전자치료기술센터) ;
  • 김연주 (주성유전자치료기술센터) ;
  • 설원기 (인제대학교 뇌과학기술연구소) ;
  • 박기랑 (주성유전자치료기술센터)
  • Cho, Young-Hwa (Juseong Gene Therapy R&D Center, Juseong College) ;
  • Yun, Hye-Jin (Institute for Brain Science and Technology, Inje University) ;
  • Kwon, Hee-Chung (Division of Radiation Cancer, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Kim, Hee-Jong (Juseong Gene Therapy R&D Center, Juseong College) ;
  • Cho, Sung-Ha (Juseong Gene Therapy R&D Center, Juseong College) ;
  • Kang, Bong-Su (Juseong Gene Therapy R&D Center, Juseong College) ;
  • Kim, Yeun-Ju (Juseong Gene Therapy R&D Center, Juseong College) ;
  • Seol, Won-Gi (Institute for Brain Science and Technology, Inje University) ;
  • Park, Kee-Rang (Juseong Gene Therapy R&D Center, Juseong College)
  • 발행 : 2008.10.30

초록

우리는 최근에 PRC1 프로모터가 유방암 유전자치료를 위하여 전사 표적이 된 유전자의 발현을 조절할 수 있는 후보 프로모터임을 보고하였다. 우리는 본 실험에서 PRC1이 폐암유전자 치료에서도 적용이 가능한지 조사하였다. 특정 프로모터가 루시퍼라제 유전자와 연결된 플라스미드를 이용한 형질전환 assay에서 PRC1 프로모터는 정상폐세포주에서는 활성을 보이지 않으나 폐암세포주에선 약 30 배의 활성을 보였다. 이는 이미 암특이적인 발현으로 알려진 BIRC5 (survivin) 프로모터와 유사한 결과였다. 또한, 바이러스 벡터를 이용한 실험에서 PRC1은 CMV 프로모터에 비해 아데노부속바이러스에서 약 75%, 아데노바이러스에서 약 66%의활성을 보였다. 이와 대조적으로, PRC1 프로모터를 함유한 이 들 두 종류의 바이러스는 정상 폐세포에서는 20%정도의 낮은 활성을 보였다. 흥미롭게도, 인간 폐종양세포를 이식한 생쥐모델을 사용한 결과에서는 PRC1 프로모터가 CMV 프로모터와 비슷한 생체 활성을 보였다. 종합하면, 이상의 결과는 PRC1이 폐암 유전자치료를 위한 전사표적 유전자의 발현을 위한 프로모터로 사용 가능함을 암시한다.

We have recently reported the PRC1 promoter as a promoter candidate to control expression of transcriptionally targeted genes for breast cancer gene therapy. We tested whether the PRC1 promoter could be also applied for the lung cancer gene therapy. In the transient transfection assay with naked plasmids containing the luciferase fused to the PRC1 promoter, the promoter showed little activity in the normal lung cell line, MRC5. However, in the lung cancer A549 cells, PRC1 showed approximately 30-fold activation which was similar to the survivin promoter, the gene whose promoter has been already reportedas a candidate for the gene therapy of lung cancer. In viral systems, the PRC1 promoter showed approximately 75% and 66% of transcriptional activity compared to the CMV promoter in the adeno-associated virus (AAV) and the adenovirus (AV) systems, respectively. However, the PRC1 promoter in either AAV or AV showed approximately 20% activity compared to the CMV promoter in the normal lung cells. In addition, human lung tumor xenograft mice showed that the PRC1 promoter activity was as strong as the CMV activity in vivo. Taken together, these results suggested that PRC1 might be a potential promoter candidate for transcriptionally targeted lung cancer gene therapy.

키워드

참고문헌

  1. Chen, J. S., J. C. Liu, L. Shen, K. M. Rau, H. P. Kuo, Y. M. Li, D. Shi, Y. C. Lee, K. J. Chang and M. C. Hung. 2004. Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther. 11, 740-747. https://doi.org/10.1038/sj.cgt.7700752
  2. Ealovega, M. W., P. K. McGinnis, V. N. Sumantran, M. F. Clarke and M. S. Wicha. 1996. bcl-xs gene therapy induces apoptosis of human mammary tumors in nude mice. Cancer Res. 56, 1965-1969.
  3. El-Aneed, A. 2004. An overview of current delivery systems in cancer gene therapy. J. Control Release 94, 1-14. https://doi.org/10.1016/j.jconrel.2003.09.013
  4. Fukazawa, T., Y. Maeda, M. L. Durbin, T. Nakai, J. Matsuoka, H. Tanaka, Y. Naomoto and N. Tanaka. 2007. Pulmonary adenocarcinoma-targeted gene therapy by a cancer- and tissue-specific promoter system. Mol. Cancer Ther. 6, 244-252. https://doi.org/10.1158/1535-7163.MCT-06-0408
  5. Gardlik, R., R. Palffy, J. Hodosy, J. Lukacs, J. Turna and P. Celec. 2005. Vectors and delivery systems in gene therapy. Med. Sci. Monit. 11, RA110-121.
  6. Gu, J. and B. Fang. 2003. Telomerase promoter-driven cancer gene therapy. Cancer Biol. Ther. 2, S64-70. https://doi.org/10.4161/cbt.192
  7. Guo, X., T. R. Evans, S. Somanath, A. L. Armesilla, J. L. Darling, A. Schatzlein, J. Cassidy and W. Wang. 2007. In vitro evaluation of cancer-specific NF-kappaB-CEA enhancer- promoter system for 5-fluorouracil prodrug gene therapy in colon cancer cell lines. Br. J. Cancer 97, 745-754. https://doi.org/10.1038/sj.bjc.6603930
  8. Laxman, B., D. E. Hall, M. S. Bhojani, D. A. Hamstra, T. L. Chenevert, B. D. Ross and A. Rehemtulla. 2002. Noninvasive real-time imaging of apoptosis. Proc. Natl . Acad. Sci. USA 99, 16551-16555. https://doi.org/10.1073/pnas.252644499
  9. Lee, H. J., Y. J. Lee, H. C. Kwon, S. Bae, S. H. Kim, J. J. Min, C. K. Cho and Y. S. Lee. 2006. Radioprotective effect of heat shock protein 25 on submandibular glands of rats. Am. J. Pathol. 169, 1601-1611. https://doi.org/10.2353/ajpath.2006.060327
  10. Lin, J., C. Page, X. Jin, A. O. Sethi, R. Patel and G. Nunez. 2001. Suppression activity of pro-apoptotic gene products in cancer cells, a potential application for cancer gene therapy. Anticancer Res. 21, 831-839.
  11. Lo, H. W., C. P. Day, and M. C. Hung. 2005. Cancer-specific gene therapy. Adv. Genet. 54, 235-255.
  12. Maemondo, M., Y. Saijo, K. Narumi, T. Kikuchi, K. Usui, R. Tazawa, K. Matsumoto, T. Nakamura, K. Sasaki, M. Takahashi, Y. Niitsu and T. Nukiwa. 2004. Gene therapy with secretory leukoprotease inhibitor promoter-controlled replication-competent adenovirus for non-small cell lung cancer. Cancer Res. 64, 4611-4620. https://doi.org/10.1158/0008-5472.CAN-03-2549
  13. Majumdar, A. S., D. E. Hughes, S. P. Lichtsteiner, Z. Wang, J. S. Lebkowski and A. P. Vasserot. 2001. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther. 8, 568-578. https://doi.org/10.1038/sj.gt.3301421
  14. Pedersen, N., M. W. Pedersen, M. S. Lan, M. B. Breslin and H. S. Poulsen. 2006. The insulinoma-associated 1: a novel promoter for targeted cancer gene therapy for small-cell lung cancer. Cancer Gene Ther. 13, 375-384. https://doi.org/10.1038/sj.cgt.7700887
  15. Su, H., J. C. Chang, S. M. Xu and Y. W. Kan. 1996. Selective killing of AFP-positive hepatocellular carcinoma cells by adeno-associated virus transfer of the herpes simplex virus thymidine kinase gene. Hum. Gene Ther. 7, 463-470. https://doi.org/10.1089/hum.1996.7.4-463
  16. Walther, W. and U. Stein. 1999. Therapeutic genes for cancer gene therapy. Mol. Biotechnol. 13, 21-28. https://doi.org/10.1385/MB:13:1:21
  17. Wang, J., H. Zhang, R. X. Liang, B. Pang, Q. G. Shi, P. T. Huang, C. F. Huang and J. G. Zhou. 2007. Identification and characterization of the novel human prostate cancer- specific PC-1 gene promoter. Biochem. Biophys. Res. Commun. 357, 8-13. https://doi.org/10.1016/j.bbrc.2007.02.153
  18. Yang, L., Z. Cao, F. Li, D. E. Post, E. G. Van Meir, H. Zhong and W. C. Wood. 2004. Tumor-specific gene expression using the survivin promoter is further increased by hypoxia. Gene Ther. 11, 1215-1223. https://doi.org/10.1038/sj.gt.3302280
  19. Yun, H. J., Y. H. Cho, Y. Moon, Y. W. Park, H. K. Yoon, Y. J. Kim, S. H. Cho, Y. I. Lee, B. S. Kang, W. J. Kim, K. Park and W. Seol. 2008. Transcriptional targeting of gene expression in breast cancer by the promoters of protein regulator of cytokinesis 1 and ribonuclease reductase 2. Exp. Mol. Med. 40, 345-353. https://doi.org/10.3858/emm.2008.40.3.345