DOI QR코드

DOI QR Code

새송이 버섯과 그 부산물의 항산화성

Antioxidative Effects of Pleurotus eryngii and Its By-products

  • 조현소 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 이현지 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 이수정 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 신정혜 (경남도립남해대학 호텔조리제빵과) ;
  • 이현욱 ((주)머쉬토피아 부설 버섯연구소) ;
  • 성낙주 (경상대학교 식품영양학과.농업생명과학연구원)
  • Cho, Hyun-So (Dept. of Food Science and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Hyun-Ji (Dept. of Food Science and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Soo-Jung (Dept. of Food Science and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Shin, Jung-Hye (Dept. of Hotel Culinary Arts & Bakery, Gyeongnam Provincial Namhae College) ;
  • Lee, Hyun-Uk (Mushroom Research Institute, Mushtopia Co. Ltd.) ;
  • Sung, Nak-Ju (Dept. of Food Science and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University)
  • 발행 : 2008.10.30

초록

새송이 버섯과 그 부산물인 버섯파치, 균체파치 및 버섯파치 발효액의 기능성을 알아보기 위하여 이화학적인 특성, 항산화능 및 아질산염 소거능을 분석 비교하였다. 수분은 발효액에서 $89.37{\pm}0.42%$로 가장 높았고, 조단백질 함량은 새송이 버섯에서 1.72%로 가장 높았다. 조섬유는 균체파치를 제외한 시료에서 10% 미만이었다. 무기질은 발효액에서 3,696.1 mg/100 g으로 가장 높았고, 칼륨의 함량이 가장 많았다. 아미노산의 함량은 새송이 버섯에서 989.59 mg/100 g으로 가장 높았으며, glutamic acid가 가장 많았다. 전자공여능은 버섯파치 발효액에서 가장 우수하였으며, 발효액의 메탄올 및 물추출물(10 mg/ml)에서 각각 $64.07{\pm}0.23$, $76.27{\pm}1.46%$이었다. 환원력은 발효액이 새송이 버섯 및 파치에 비해 유의적으로 높았으며, 10 mg/ml의 발효액 첨가 시 물추출물에서 $2.22{\pm}0.03$으로 가장 높았다. SOD 유사활성은 발효액의 경우 2.5 mg/ml 첨가 시 50% 이상의 활성이 있었다. 메탄올 및 물추출물에서 10 mg/ml 첨가 농도에서 균체 파치를 제외한 모든 시료에서 50%이상의 활성을 보였다. Hydroxyl radical 소거능은 균체파치 메탄올추출물의 $1{\sim}5\;mg/ml$ 첨가구를 제외한 모든 실험군에서 50% 이상의 소거능을 보였다. 아질산염 소거능은 pH 2.5의 반응 조건에서 pH 4.0보다 우수하였으며, 메탄올추출물에서는 $42.93{\pm}1.71{\sim}72.97{\pm}2.18%$, 물추출물에서는 $57.66{\pm}1.80{\sim}81.07{\pm}0.81%$로 모든 시료에서 물추출물이 메탄올추출물보다 높았다. 따라서 새송이 버섯파치를 이용한 발효액은 항산화 활성이 우수하여 기능성 식품이나 사료로서의 개발 가능성이 기대된다.

Physicochemical characteristics and antioxidative activity were measured to investigate the possibility for functional characteristics of Pleurotus eryngii and its by-products. By-products of Pleurotus eryngii were classified with mushroom, fungal body and fermented mushroom by-product. Moisture was the highest in fermented mushroom by-product and crude protein was 1.72%, in mushroom. Crude fiber content was less than 10% except the fungal body by-product. Mineral content appeared to be the highest in the fermented mushrooom with a value of 3,696.1 mg/100 g, and potassium was a predominant mineral in Pleurotus eryngii as well as its by-products. Amino acid content was the highest in mushroom with a level of 989.59 mg/100 g. DPPH radical scavenging ability of the fermented mushroom was the highest, and its methanol extract and water extract exhibited $64.07{\pm}0.23%$ and $76.27{\pm}1.46%$ of scavenging activity at a concentration of 10 mg/ml. Reducing power was significantly higher in the fermented mushroom in comparison with those of the mushroom, mushroom by-product, and fungal body by-product. The reducing power of the water extract of fermented mushroom was the highest with a value of $2.22{\pm}0.03$. SOD-like activities for the individual samples except the fungal body by-product were higher than 50% at a concentration of 10 mg/ml. The hydroxyl radical scavenging abilities of the individual samples except the fungal body by-product were over 50%. Nitrite scavenging effects were better in pH 2.5 than in pH 4.0. While the nitrite scavenging effects of methanol extracts were $42.93{\pm}1.71{\sim}72.97{\pm}2.18%$, those of the water extracts were $57.66{\pm}1.80{\sim}81.07{\pm}0.81%$. Antioxidative activity of the fermented mushroom appeared to be the highest among the mushroom by-products. Taken together, these results provide an insight into utilization of the mushroom by-products as materials for functional foods and animal feed.

키워드

참고문헌

  1. AOAC. 1990. Official methods of analysis of the association of official analytical chemists 13th eds., Washington, D.C., pp. 132.
  2. AOAC. 1990. Official methods of analysis of the association of official analytical chemists 15th ed., Washington, DC, pp. 994.
  3. Bae, J. S., Y. I. Kim, S. H. Jung, Y. G. Oh and W. S. Kwak. 2006. Evaluation on feed-nutritional value of spent mushroom( Pleurotus osteratus, Pleurotus eryngii, Ammulina velutipes) substrates as a roughage source for ruminants. J. Anim. Sci. & Technol. 48, 237-246. https://doi.org/10.5187/JAST.2006.48.2.237
  4. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1200.
  5. Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate analysis, A practical approach. IRI press. Oxford and Washington, D.C., pp. 2.
  6. Chung, M. J., J. H. Shin, S. J. Lee, S. K. Hong, H. J. Kang and N. J. Sung. 1998. Chemical compounds of wild and cultivated horned rampon, Phyteuma japonicum Miq. Korean J. Food & Nutr. 11, 437-443.
  7. Guide & directory for Agro-Food export in Korea. 2007. Ministry of Agriculture and Forestry.Korea Agro-Fisheries Trade Corporation. pp. 197-199.
  8. Gutteridge, J. M. 1984. Reactivity of hydroxyl and hydroxyllike radicals discriminated by release of thiobarbituric acid reactive material from deoxy sugars, nucleosides and benzoate. Biochem. J. 224, 761-767. https://doi.org/10.1042/bj2240761
  9. Hong, J. S., Y. H. Kim, M. K. Kim, Y. S. Kim and H. S. Sohn. 1989. Contents of free amino acids and total amino acids in Agaricus bisporus, Pleurotus ostreatus and Lentinus edodes. Korean J. Food Sci. Technol. 21, 58-62.
  10. Hong, K. H., B. Y. Kim and H. K. Kim. 2004. Analysis of nutritional components in Pleurotus ferulea. J. Food Sci. Technol. 36, 563-567.
  11. Hwang, Y. J., H. K. Nam, M. J. Chang, G. W. Noh and S. H. Kim. 2003. Effect of Lentinus edodes and Pleurotus erngii extracts on proliferation and apoptosis in human colon cancer cell lines. Food Sci. Nutr. 32, 217-222.
  12. Jung, I. C., S. Park, K. S. Park, H. C. Ha, S. H. Kim, Y. I. Kwon and J. S. Lee. 1996. Antioxidative effect of fruit body and mycelial extracts of Pleurotus ostreatus. Korean J. Food Sci. Technol. 28, 464-469.
  13. Kang, S. C. and M. J. Kim. 2003. Storage enhancement of pine-mushroom by using plants. Life Sci. Res. 1, 287-294.
  14. Kang, T. S., M. S. Kang, J. M. Sung, A. S. Kang, H. R. Shon and S. Y. Lee. 2001. Effect of Pleurotus erngiion the blood glucose and cholesterol in diabetic rats. Korean J. Mycol. 29, 86-90.
  15. Kim, J. S., J. S. Han and J. S. Lee. 1995. A study for the mechanical and sensory characteristics of mushrooms by various cooking methods. Korean J. Food Cook. Sci. 11, 44-50.
  16. Kim, D. S., B. W. Ahn, D. M. Yeum, D. W. Lee, S. T. Kim and Y. H. Park. 1987. Degradation of carcinogenic nitrosamine formation factor by natural food components. Bull. Korean Fish. Soc. 20, 463-468.
  17. Kim, H. J., M. S. Ahn, G. H. Kim and M. H. Kang. 2006. Antioxidative and antimicrobial activities of Pleurotus eryngii extracts prepared from different aerial part. Korean J. Food Sci. Technol. 38, 799-804.
  18. Kim, H. K., H. S. Han, G. D. Lee and K. H. Kim. 2005. Physiological activities of fresh Pleurotus eryngii extracts. J. Korean Soc. Food Sci. Nutr. 34, 439-445. https://doi.org/10.3746/jkfn.2005.34.4.439
  19. Kim, H. S., H. C. Ha and T. S. Kim. 2003. Research and prospects in new functional mushrooms. Food Sci. 36, 42-46.
  20. Kim, S. J., D, Han, M. H. Park, J. S. Rhee. 1995. Measurement of superoxide dismutase-like activity of natural antioxidants. Biosci. Biotech. Biochem. 59, 822-826. https://doi.org/10.1271/bbb.59.822
  21. Kim, Y. I., J. S. Bae, S. H. Jung, M. H. Ahn and W. S. Kwak. 2007. Yield and physicochemical characteristics of spent mushroom (Pleurotus eryngii, Pleurotus osteratus and Ammulina velutipes) substrates according to mushroom species and cultivation types. J. Anim. Sci. & Technol. 49, 79-88. https://doi.org/10.5187/JAST.2007.49.1.079
  22. Liu, F., V. E. C. Ooi and S. T. Chang. 1996. Free radical scavenging activity of mushroom polysaccharide extracts. Life Sci. 60, 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0
  23. Ma, S. J. 1983. Effects of the substances from dried mushroom by several organic solvents on the stability of fat. J. Food Sci. 15, 150-154.
  24. Marklund, S. and G. Marklund. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 468-474.
  25. Nam, S. H. and M. Y. Kang. 2000. Screening antioxidative activity of hot water extracts from medical plants. J. Korean Soc. Agric. Chem. Biotechnol. 43, 141-147.
  26. Oyaizu, M. 1986. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Japanese J. Nutr. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  27. Peter, F. S. 1975. The toxicology of nitrate, nitrite and N-nitroso compounds. J. Sci. Food Agric. 26, 1761-1766. https://doi.org/10.1002/jsfa.2740261119
  28. Williams, B. C., J. T. Mcmullan and S. Mccahey. 2001. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresource Technology 79, 227-230. https://doi.org/10.1016/S0960-8524(01)00073-6
  29. Yoon, S. J. and M. Y. Lee. 2004. Quality characteristics of sulgidduk added with concentration of Hericium erinaceus powder. Korean J. Food Cook. Sci. 20, 575-580.

피인용 문헌

  1. Comparison of Physicochemical Properties and Antioxidant Activities between Lentinula edodes and New Cultivar Lentinula edodes GNA01 vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1484
  2. Food Functional Properties of Pleurotus eryngii Cultivated with Different Wavelength of LED Lights vol.19, pp.5, 2012, https://doi.org/10.11002/kjfp.2012.19.5.645
  3. Quality Characteristics of Dumpling Shell Containing Pleurotus eryngii Powder vol.40, pp.4, 2011, https://doi.org/10.3746/jkfn.2011.40.4.570
  4. Quality Characteristics and Antioxidant Activities of Yanggaeng added with Pleurotus eryngii Powder vol.27, pp.1, 2017, https://doi.org/10.17495/easdl.2017.2.27.1.69