DOI QR코드

DOI QR Code

The Regulation of Taurine Transport through the Blood-Placental Barrier under Oxidative Stress

  • Published : 2008.10.20

Abstract

In the present study, we examined the changes of uptake and efflux of taurine under various conditions inducing oxidative stress using rat conditionally immortalized syncytiotrophoblast cell line, TR-TBT cell, as blood-placental barrier in vitro model. In addition, we identified the characteristics of taurine transport in TR-TBT cells including general features, besides effect of calcium ion on taurine transport. Taurine uptake showed time, $Na^+$ and $Cl^-$ dependency, and was decreased by PKC activator in TR-TBT cells. Also, calcium free condition decreased taurine uptake and evoked taurine efflux in the cells. Oxidative stress induced the change of taurine transport in TR-TBT cells, but the changes were different depending on the types of stimulation inducing oxidative stress. The taurine uptake was increased by TNF-$\alpha$, LPS and DEM stimulation but decreased by $H_2O_2$ and NO stimulation. Also, the taurine efflux was regulated by TNF-$\alpha$ stimulation. In conclusion, the taurine transport through the blood-placental barrier was regulated in oxidative stress conditions, and these results demonstrated that oxidative stress affected the taurine supplies to fetus and taurine level of fetus.

Keywords

References

  1. Huxtable, R. J., Physiological actions of taurine, Physiol. Rev., 72, 101-163 (1992) https://doi.org/10.1152/physrev.1992.72.1.101
  2. Tappaz, M. L., Taurine biosynthetic enzymes and taurine transporter: molecular identification and regulations, Neurochem. Res., 29, 83-96 (2004) https://doi.org/10.1023/B:NERE.0000010436.44223.f8
  3. Lambert, I. H., Regulation of the cellular content of the organic osmolyte taurine in mammalian cells, Neurochem. Res., 29, 27-63 (2004) https://doi.org/10.1023/B:NERE.0000010433.08577.96
  4. Foos, T. M. and Wu, J. Y., The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis, Neurochem. Res., 27, 21-26 (2002) https://doi.org/10.1023/A:1014890219513
  5. Chapman, G. E. and Greenwood, C. E., Taurine in nutrition and brain development, Nutr. Res., 8, 955-968 (1988) https://doi.org/10.1016/S0271-5317(88)80135-0
  6. Sturman, J. A., Taurine in development, J. Nutr., 118, 1169-1176 (1988) https://doi.org/10.1093/jn/118.10.1169
  7. Jansson, T., Amino acid transporters in the human placenta, Pediatr. Res., 49, 141-7 (2001) https://doi.org/10.1203/00006450-200102000-00003
  8. Kulanthaivel, P., Cool, D. R., Ramamoorthy, S., Mahesh, V. B., Leibach, F. H. and Ganapathy, V., Transport of taurine and its regulation by protein kinase C in the JAR human placental choriocarcinoma cell line, Biochem. J., 277, 53-58 (1991) https://doi.org/10.1042/bj2770053
  9. Ramamoorthy, S., Leibach, F. H., Mahesh, V. B., Han, H., Yang-Feng, T., Blakely, R. D. and Ganapathy, V., Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta, Biochem. J., 300, 893-900 (1994) https://doi.org/10.1042/bj3000893
  10. Rubin, E., Essential Pathology. Lippincott Williams & Wilkins, Maryland, (2001)
  11. Norberg, S., Powell, T. L. and Jansson, T., Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters, Pdeiatr. Res., 44, 233-238 (1998) https://doi.org/10.1203/00006450-199808000-00016
  12. Lyall, F., Greer, I., Young, A. and Myatt, L., Nitric oxide concentrations are increased in the feto-placental circulation in intrauterine growth restriction, Placenta, 17, 165-168 (1996) https://doi.org/10.1016/S0143-4004(96)80009-9
  13. Kitano, T., Iizasa, H., Terasaki, T., Asashima, T., Matsunaga, N., Utoguchi, N., Watanabe, Y., Obinata, M., Ueda, M., and Nakashima, E., Polarized glucose transporters and mRNA expression properties in newly developed rat syncytiotrophoblast cell lines, TR-TBTs, J. Cell. Physiol., 193, 208-218 (2002) https://doi.org/10.1002/jcp.10165
  14. Kitano, T., Iizasa, H., Hwang, I. W., Hirose, Y., Morita, T., Maeda, T. and Nakashima, E., Conditionally immortalized syncytiotrophoblast cell lines as new tools for study of the blood-placenta barrier, Biol. Pharm. Bull., 27, 753-759 (2004) https://doi.org/10.1248/bpb.27.753
  15. Mochizuki, T., Satsu, H. and Shimizu, M., Signaling pathways involved in tumor necrosis factor $\alpha$-induced upregulation of the taurine transporter in Caco-2 cells, FEBS Letters, 579, 3069-3074 (2005) https://doi.org/10.1016/j.febslet.2005.04.063
  16. Molchanova, S. M., Oja, S. S. and Saransaari P., Mechanisms of enhanced taurine release under $Ca^{2+}$ depletion, Neurochem. Int., 47, 343-349 (2005) https://doi.org/10.1016/j.neuint.2005.04.027
  17. Kang, Y. S., Ohtsuki, S., Takanaga, H., Tomi, M., Hosoya, K. I. and Terasaki, T., Regulation of taurine transport at the bloodbrain barrier by tumor necrosis factor-$\alpha$, taurine and hypertonicity, J. Neurochem., 83, 1188-1195 (2002) https://doi.org/10.1046/j.1471-4159.2002.01223.x
  18. Han, X., Budreau, A. M. and Chesney, R. W., Cloning and characterization of the promoter region of the rat taurine transporter (TauT) gene, Adv. Exp. Med., 483, 97-108 (2000)
  19. Bannai, S., Induction of cystine and glutamate transport activity in human fibroblast by diethyl malteate and other electrophilic agents, J. Biol. Chem., 289, 2435-2440 (1984)
  20. Hosoya, K., Saeki, S., and Terasaki, T., Activation of carriermediated transport of L-cystine at the blood-brain and bloodretinal barriers in vivo, Microvasc. Res., 62, 136-142 (2001) https://doi.org/10.1006/mvre.2001.2328
  21. Kim, H.W., Kim, J.H., An, H.S., Park, K.K., Kim, B.K. and Park, T., Myo-inositol restores the inflammation-induced down-regulation of taurine transport by the murine macrophage cell line, RAW 264.7, Life Sci., 73, 2477-2489 (2003) https://doi.org/10.1016/S0024-3205(03)00656-8
  22. Romio, L., Zegarra-Moran, Varesio, L and Galietta, L.J.V., Regulation of taurine transport in murine macrophages, Amino Acids, 21, 151-160 (2001) https://doi.org/10.1007/s007260170022
  23. O'Flaherty, L., Stapleton, P.P., Redmond, H.P. and Bouchier-Hayes, D., Dexamethasone and lipopolysaccharide regulation of taurine transport in Caco-2 cells, J. Surg. Res., 69, 331-336 (1997) https://doi.org/10.1006/jsre.1997.5067
  24. Meng, T. C., Fukada, T. and Tonks, N. K., Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo, Mol. Cell, 9, 387-399 (2002) https://doi.org/10.1016/S1097-2765(02)00445-8
  25. Kulanthaivel, P., Leibach, F. H., Mahesh, V. B. and Ganapathy, V., Tyrosine residues are essential for the activity of the human placental taurine transporter, Biochem. Biophys. Acta., 985, 139-146 (1989) https://doi.org/10.1016/0005-2736(89)90358-1
  26. Myatt, L., Rosenfield, R. B., Eis, A. L., Brockman, D. E., Greer, I. and Lyall, F., Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action, Hypertension, 28, 488-493 (1996) https://doi.org/10.1161/01.HYP.28.3.488
  27. Roggensack, A. M., Zhang, Y. and Davidge, S. T., Evidence for peroxynitrite formation in the vasculature of women with preclampsia, Hypertension, 33, 83-89 (1999) https://doi.org/10.1161/01.HYP.33.1.83
  28. Khullar, S., Greenwood, S. L., Mccord, N., Glazier, J. D. and Ayuk, P. T. Y., Nitric oxide and superoxide impair human placental amino acid uptake and increase $Na^+$ permeability: implications for fetal growth, Free radical Biolocy & Medicine., 36, 271-277 (2004) https://doi.org/10.1016/j.freeradbiomed.2003.11.007
  29. Roos, S., Powell, L. and Jansson, T., Human placental taurine transporter in uncomplicated and IUGR pregnancies: cellular localization , protein expression, and regulation, Am. J. Physiol. Regul. Inter. Comp. Physiol., 287, R886-R893 (2004) https://doi.org/10.1152/ajpregu.00232.2004
  30. Lee, N.Y. and Kang, Y. S., The brain-to-blood efflux transport of taurine and changes in the blood-brain barrier transport system by tumor necrosis factor-$\alpha$, Brain Res., 1023, 141-147 (2004) https://doi.org/10.1016/j.brainres.2004.07.033