DOI QR코드

DOI QR Code

리포트 시스템을 이용한 살리실산 생합성 유전자 SID2의 발현 해석

Characterization of SID2 that is required for the production of salicylic acid by using β-GLUCURONIDASE and LUCIFERASE reporter system in Arabidoposis

  • 홍미주 (경상대학교 대학원 응용생명과학부) ;
  • 정미선 (경상대학교 대학원 응용생명과학부) ;
  • 이지영 (경상대학교 대학원 응용생명과학부) ;
  • 김훈 (경상대학교 대학원 응용생명과학부) ;
  • 정재철 (경상대학교 대학원 응용생명과학부) ;
  • 신명철 (경상대학교 대학원 응용생명과학부) ;
  • 자알알리 (경상대학교 대학원 응용생명과학부) ;
  • 박보경 (경상대학교 대학원 응용생명과학부) ;
  • 최원균 (경상대학교 대학원 응용생명과학부) ;
  • 윤대진 (경상대학교 대학원 응용생명과학부)
  • Hong, Mi-Ju (Division of Applied Life Science(BK21 program), and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University) ;
  • Cheong, Mi-Sun (Division of Applied Life Science(BK21 program), and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University) ;
  • Lee, Ji-Young (Division of Applied Life Science(BK21 program), and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University) ;
  • Kim, Hun (Division of Applied Life Science(BK21 program), and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University) ;
  • Jeong, Jae-Cheol (Division of Applied Life Science(BK21 program), and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University) ;
  • Shen, Mingzhe (Division of Applied Life Science(BK21 program), and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University) ;
  • Ali, Zahir (Division of Applied Life Science(BK21 program), and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University) ;
  • Park, Bo-Kyung (Division of Applied Life Science(BK21 program), and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University) ;
  • Choi, Won-Kyun (Division of Applied Life Science(BK21 program), and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University) ;
  • Yun, Dae-Jin (Division of Applied Life Science(BK21 program), and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University)
  • 발행 : 2008.09.30

초록

SA는 천연 페놀 화합물로써 식물체가 생성하는 호르몬 중의 하나이다. SA는 특히 병저항성, 생물학적, 비생물학적 스트레스로 인해 합성이 촉진되며 식물 방어 기작을 일으킨다고 알려져 있다. 식물의 방어 기작은 바로 식물에서 얻어지는 생산량에 영향을 미치기 때문에 SA에 대한 연구가 많이 되어져 왔다. 하지만 SA를 이해하기에는 아직까지 많은 연구가 필요 되어 지고 있다. 따라서 본 연구는 애기장대에서 SA 생합성하는데 중요한 효소인 SID2가 병저항성이 강한 siz1-2 돌연변이체와 야생형에서 어떠한 조절의 차이를 보이는 지를 SID2 promoter에 의해서 조절되는 GUS와 LUC를 가진 각각의 형질전환 식물체를 통하여 관찰하였다. GUS의 발현을 GUS histochemical assay, GUS enzyme assay 그리고 LUC의 발현을 CCD 카메라를 이용한 이미지 촬영과 Luciferase enzyme assay 수행한 결과, siz1-2를 사용한 형질전환 식물체에서 야생형에 비해 발현이 높게 일어났다. 이것을 바탕으로 SA에 반응하는 유전자들의 발현이 siz1-2 돌연변이체에서는 높은 이유가 SID2의 발현이 높게 조절 받기 때문이라는 것을 SID2 promoter:GUS::LUC/siz1-2 형질전환 식물체를 통해 알 수 있었다.

Salicylic acid(SA) is a phytohormone that is related to plant defense mechanism. The SA accumulation is triggered by abiotic and biotic stresses. SA acts as a signal molecular compound mediating systemic acquired resistance and hypersensitive response in plant. Although the role of SA has been studied extensively, an understanding of the SA regulatory mechanism is still lacking in plants. In order to comprehend SA regulatory mechanism, we have been transformed with a SID2 promoter:GUS::LUC fusion construct into siz1-2 mutant and wild plant(Col-0). SIZ1 encodes SUMO E3 ligase and negatively regulates SA accumulation in plants. SID2(SALICYLIC ACID INDUCTION DEFICIENT2) is a crucial enzyme of SA biosynthesis. The Arabidopsis SID2 gene encodes isochorismate synthase(ICS) that controls SA level by conversion of chorismate to isochorismate. We compared the regulation of SID2 in wild-type and siz1-2 transgenic plants that express SID2 promoter:GUS::LUC constructs respectively. The expressions of $\beta$-GLUCURONIDASE and LUCIFERASE were higher in siz 1-2 transgenic plant without any stress treatment. SID2 promoter:GUS::LUC/siz1-2 transgenic plant will be used as a starting material for isolation of siz1-2 suppressor mutants and genes involved in SA-mediated stress signaling pathway.

키워드

참고문헌

  1. Bent A (2006) Arabidopsis thaliana floral dip transformation method. Methods Mol Biol 343: 87-103
  2. Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by SA. Science 262: 1883-1886 https://doi.org/10.1126/science.8266079
  3. Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in $H_{2}O_{2}$ and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116: 1351-1357 https://doi.org/10.1104/pp.116.4.1351
  4. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42: 185-209 https://doi.org/10.1146/annurev.phyto.42.040803.140421
  5. Gallagher SR (1992) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press, San Diego
  6. Holuigue L, Salinas P, Blanco F, Garreton V (2007) Salicylic acid and reactive oxygen species in the activation of stress defense genes. Hayat S, Ahmad A. (eds), Salicylic Acid-A Plant Hormone, Springer. Netherland pp 197-246
  7. Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic Analysis of Osmotic and Cold Stress Signal Transduction in Arabidopsis: lnteractions and Convergence of Abscisic Acid-Dependent and Abscisic Acid-lndependent Pathways. Plant Cell 9: 1935-1949 https://doi.org/10.1105/tpc.9.11.1935
  8. Janda T, Szalai G, Tari I, Pa'ldi E (1999) Hydroponic treatment with salicylic acid decrease the effects of chilling injury in maize plants. Planta 208: 175-180 https://doi.org/10.1007/s004250050547
  9. Jefferson R (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Reporter 5: 387-405 https://doi.org/10.1007/BF02667740
  10. Jyoti Shah (2003) The salicylic acid loop in plant defense. Current Opinion in Plant Biology 6: 365-371 https://doi.org/10.1016/S1369-5266(03)00058-X
  11. Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat Stress Phenotypes of Arabidopsis Mutants Implicate Multiple Signaling Pathways in the Acquisition of Thermotolerance. Plant Physiol 138: 882-897 https://doi.org/10.1104/pp.105.062257
  12. Lee JY, Nam JS, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, Kim D, Lee SY, David E, Tesfaye M, Qingqiu G, Shisong M, Hans J. Bohnert, Kwak SS, Bressan LA, Hasegawa PM, Yun DJ (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant Journal 49: 79-90 https://doi.org/10.1111/j.1365-313X.2006.02947.x
  13. Leon J, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108: 1673-1678 https://doi.org/10.1104/pp.108.4.1673
  14. Mackerness SAH (2000) Plant responses to ultraviolet-B (UV-B: 280-20 nm) stress: What are the key regulators? Plant Growth Regulation 32: 27-29 https://doi.org/10.1023/A:1006314001430
  15. Pancheva TV, Popova LP, Uzunova J (1996) Effects of salicylic acid on growth and photosynthesis in barley plants. Plant Physiol 149: 57-63 https://doi.org/10.1016/S0176-1617(96)80173-8
  16. Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic Investigation of the Effect of Salicylic Acid on Arabidopsis Seed Germination and Establishment of Early Defense Mechanisms. Plant Physiology 141: 910-923 https://doi.org/10.1104/pp.106.082057
  17. Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43: 439-463 https://doi.org/10.1146/annurev.pp.43.060192.002255
  18. Scott IM, Clarke SM, Wood JE, Mur LA (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135: 1040-1049 https://doi.org/10.1104/pp.104.041293
  19. Sharma YK, Leon J, Raskin KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA 93: 5099-5104
  20. Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282: 5919-5933 https://doi.org/10.1074/jbc.M605193200
  21. Surplus SL, Jordan BR, Murphy AM, Carr JP, Thomas B, Mackerness SAH (1998) Ultraviolet-B -induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell and Environment 21: 685-694 https://doi.org/10.1046/j.1365-3040.1998.00325.x
  22. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-565 https://doi.org/10.1038/35107108
  23. Yalpani N, Enyedi AJ, Leo'n J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogen-related proteins and virus resistance in tobacco. Planta 193: 372-376
  24. Yoo JH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH, Kim HS, Lee SM, Yoon HW, Lim CO, Yun DJ (2005) Direct Interaction of a Divergent CaM Isoform and the Transcription Factor, MYB2, Enhances Salt Tolerance in Arabidopsis. J Biol Chem 280: 3697-3706 https://doi.org/10.1074/jbc.M408237200