A Highly Efficiency CLass-F Power Amplifier Using The Spiral PBG(Photonic Bandgap) Structure

나선형 구조의 PBG(Photonic Bandgap)를 적용한 고효율 Class-F 전력 증폭기

  • Kim, Sun-Young (Information and Telecommunication Engineering, Soongsil University) ;
  • Seo, Chul-Hun (Information and Telecommunication Engineering, Soongsil University)
  • 김선영 (숭실대학교 정보통신전자공학부) ;
  • 서철헌 (숭실대학교 정보통신전자공학부)
  • Published : 2008.09.25

Abstract

In this paper, the power added efficiency(PAE) of class F power amplifier is improved by applying a new Photonic Bandgap (PBG) structure on the output of amplifier. The proposed spiral PBG structure is a two-dimensional (2-D) periodic lattice patterned on a dielectric slab that does not require nonplanar fabrication process. This structure bas higher suppression performance at second harmonic. Also, It has a sharp skirt property. This new PBG structure can be applied with class F power amplifier for efficiency improvement. We obtained the PAE of 73.62 % for CDMA applications, and the PAE performance is improved as much as 6.2 % compared with that of a conventional class F power amplifier.

본 논문에서는 class F 전력 증폭기의 출력 정합단에 새로운 광전자밴드갭(PBG) 구조를 적용하여 높은 효율을 얻을 수 있도록 하였다. 제안된 나선형 PBG 구조는 비평면 제조 공정을 요구하지 않는 유전체 판 위에 패턴을 뜬 2차원의 규칙적인 격자이다. 이 구조는 2차 고조파에서 높은 저지 특성을 갖는다. 또한 더욱 가파른 스커트 특성을 보인다. 이 새로운 PBG 구조는 효율향상을 위하여 class F 전력 증폭기에 적용되어 질 수 있다. 나선형 PBG 구조를 적용한 class F 전력 증폭기의 power-added efficiency(PAE)는 코드분할 다중접속(CDMA) 응용에서 73.62 %의 효율을 얻을 수 있었다. 이 결과는 제안한 PBG 구조를 적용하지 알은 기존의 Class F 전력 증폭기와 비교했을 때 6.2 % 향상된 결과를 보여준다.

Keywords

References

  1. W. H. Doherty, "A new high efficiency power amplifier for modulated waves," Proc. IRE, vol. 24, no. 9, pp. 1163-1182, Sep. 1936. https://doi.org/10.1109/JRPROC.1936.228468
  2. Grebennikov, A. V., "Switched-mode tuned high-efficiency power amplifiers: historical aspect and future prospect", IEEE RFIC Symp., page 49-52, June 2002.
  3. Grebennikov, A. V., "Circuit Design Technique for High Efficiency Class F Amplifier", IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, page 771-774, June 2000.
  4. Y. Y. Woo, Y. Yang, and B. Kim, "Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers", IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1969-1974, May 2006.(758) https://doi.org/10.1109/TMTT.2006.872805
  5. Y. Y. Woo, Y. Yang, and B. Kim, "Efficiency Comparison Between Highly Efficient Class-F and Inverse Class-F Power Amplifiers", IEEE Microwave magazine, June 2007
  6. H. C. Park, G. H. Ahn, S. C. Jung, C. S. Park, W. S. Nah, B. S. Kim, and Y. G. Yang, "High-Efficiency Class-F Amplifier Design In The Presence of Internal Parasitic Components of Transistors", Proceeding of the 36th European Microwave Conference, Sep. 2006.
  7. T. S. Kim and C. H. Seo, "A Novel Photonic Bandgap Structure for Low-Pass Filter of Wide Stopband," IEEE Microwave and Guided Wave Letters, vol. 10, no. 1, pp. 13-15, January 2000. https://doi.org/10.1109/75.842072
  8. C. Y. Hang, "High Efficiency Power Amplifier with Novel PBG Ground Plane For Harmonic Tuning," IEEE Int'l, Symp., vol. 2, pp. 807-810, 1999.
  9. J. Joubert, "Spiral microstrip resonators for narrow-stopband filters", IEE Proc.-Microw. Antennas Propag., vol. 150, No. 6, December 2003.
  10. Bao-qin Lin, Qiu-rong Zheng, and Nai-chang Yuan, "A Novel Planar PBG Structure for Size Reduction," IEEE Microwave and Wireless Components Letters, vol. 16, no. 5, pp. 269-271, May 2006. https://doi.org/10.1109/LMWC.2006.873507