Identification of Proteins Binding to Decursinol by Chemical Proteomics

  • Kang, Hyo-Jin (Korea Research Institute Bioscience and Biotechnology (KRIBB)) ;
  • Yoon, Tae-Sung (Korea Research Institute Bioscience and Biotechnology (KRIBB)) ;
  • Jeong, Dae-Gwin (Korea Research Institute Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Yong-Mo (Korea Research Institute Bioscience and Biotechnology (KRIBB)) ;
  • Chung, Jin-Woong (Korea Research Institute Bioscience and Biotechnology (KRIBB)) ;
  • Ha, Jong-Seong (Korea Research Institute Bioscience and Biotechnology (KRIBB)) ;
  • Park, Sung-Sup (Korea Research Institute Bioscience and Biotechnology (KRIBB)) ;
  • Ryu, Seong-Eon (Korea Research Institute Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Sang-Hee (College of Pharmacy, Seoul National University) ;
  • Bae, Kwang-Hee (Korea Research Institute Bioscience and Biotechnology (KRIBB)) ;
  • Chung, Sang-J. (Korea Research Institute Bioscience and Biotechnology (KRIBB))
  • Published : 2008.08.31

Abstract

Decursinol, found in the roots of Angelica gigas Nakai, has been traditionally used to treat anemia and other various diseases. Recently, numerous biological activities such as cytotoxic effect on leukemia cells, and antitumor, neuroprotection, and antibacterial activities have been reported for this compound. Although a number of proteins including protein kinase C, androgen receptor, and acetylcholinesterase were proposed as molecular targets responsible for the activities of decursinol, they are not enough to explain such a diverse biological activity mentioned above. In this study, we employed a chemical proteomic approach, leading to identification of seven proteins as potential proteins interacting with decursinol. Most of the proteins contain a defined ATP or nucleic acid binding domain and have been implied to be involved in the pathogenesis and progression of various human diseases including cancer, autoimmune disorders, or neurodegenerative diseases. The present results may provide clues to understand the molecular mechanism of the biological activities shown by decursinol, an anticancer natural product.

Keywords

References

  1. Ahn, K.-S., W.-S. Sim, and I.-H. Kim. 1995. Detection of anticancer activity from the root of Angelica gigas in vitro. J. Microbiol. Biotechnol. 5: 105-109
  2. Ahn, K. S., W.-S. Sim, I. K. Lee, Y. B. Seu, and I. H. Kim. 1997. Decursinol angelate. A cytotoxic and protein kinase C activating agent from the root of Angelica gigas. Planta Med. 63: 360-361 https://doi.org/10.1055/s-2006-957701
  3. Bae, E.-A., M. J. Han, N.-J. Kim, and D.-H. Kim. 1998. Anti-Helicobacter pylori activity of herbal medicines. Biol. Pharm. Bull. 21: 990-992 https://doi.org/10.1248/bpb.21.990
  4. Chaudhury, S., T. R. Welch, and B. S. J. Blagg. 2006. Hsp90 as a target for drug development. ChemMedChem 1: 1331-1340 https://doi.org/10.1002/cmdc.200600112
  5. Choi, I.-K., H. J. Shin, H.-S. Lee, and H. J. Kwon. 2007. Streptochlorin, a marine natural product, inhibits NF-$\kappa$B activation and suppress angiogenesis in vitro. J. Microbiol. Biotechnol. 17: 1338-1343
  6. Galam, L., M. K. Hadden, Z. Ma, Q.-Z. Ye, B.-G. Yun, B. S. J. Blagg, and R. L. Matts. 2007. High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90-dependent refolding of firefly luciferase. Bioorg. Med. Chem. 15: 1939-1946 https://doi.org/10.1016/j.bmc.2007.01.004
  7. Han, S.-Y. and S. H. Kim. 2007. Introduction to chemical proteomics for drug discovery and development. Arch. Pharm. (Weinheim) 340: 169-177 https://doi.org/10.1002/ardp.200600153
  8. Itokawa, H., Y. Yun, H. Morita, K. Takeya, and S. R. Lee. 1994. Cytotoxic coumarins from roots of Angelica gigas Nakai. Nat. Med. 48: 334-335
  9. Jang, M., B. C. Park, D. H. Lee, K.-H. Bae, S. Cho, H. S. Park, B. R. Lee, and S. G. Park. 2007. Interaction proteome analysis of Xanthomonas Hrp proteins. J. Microbiol. Biotechnol. 17: 359-363
  10. Jiang, C., H. J. Lee, G. X. Li, J. Guo, B. Malewicz, Y. Zhao, et al. 2006. Potent antiandrogen and androgen receptor activities of an Angelica gigas-containing herbal formulation: Identification of decursin as a novel and active compound with implications for prevention and treatment of prostate cancer. Cancer Res. 66: 453-463 https://doi.org/10.1158/0008-5472.CAN-05-1865
  11. Jung, H. J. and H. J. Kwon. 2006. Chemical genomics with natural products. J. Microbiol. Biotechnol. 16: 651-660
  12. Kang, S., E. Y. Kim, Y. J. Bahn, J. W. Chung, D. H. Lee, S. G. Park, T.-S. Yoon, B. C. Park, and K.-H. Bae. 2007. A proteomic analysis of the effect of MAPK pathway activation on L-glutamateinduced neuronal cell death. Cell. Mol. Biol. Lett. 12: 139-147 https://doi.org/10.2478/s11658-006-0057-8
  13. Kang, S. Y. and Y. C. Kim. 2007. Decursinol and decursin protect primary cultured rat cortical cells from glutamateinduced neurotoxicity. J. Pharm. Pharmacol. 59: 863-870 https://doi.org/10.1211/jpp.59.6.0013
  14. Kang, S. Y., K. Y. Lee, S. H. Sung, M. J. Park, and Y. C. Kim. 2001. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: Structure-activity relationships. J. Nat. Prod. 64: 683-685 https://doi.org/10.1021/np000441w
  15. Kang, S. Y., K. Y. Lee, S. H. Sung, and Y. C. Kim. 2005. Four new neuroprotective dihydropyranocoumarins from Angelica gigas. J. Nat. Prod. 68: 56-59 https://doi.org/10.1021/np049705v
  16. Kang, T. H., K.-H. Bae, M.-J. Yu, W.-K. Kim, H.-R. Hwang, H. Jung, et al. 2007. Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress. Proteomics 7: 2624-2635 https://doi.org/10.1002/pmic.200601028
  17. Katayama, H. and Y. Oda. 2007. Chemical proteomics for drug discovery based on compound-immobilized affinity chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 855: 21-27 https://doi.org/10.1016/j.jchromb.2006.12.047
  18. Kim, H. H., S. S. Bang, J. S. Choi, H. Han, and I.-H. Kim. 2005. Involvement of PKC and ROS in the cytotoxic mechanism of anti-leukemic decursin and its derivatives and their structureactivity relationship in human K562 erythroleukemia and U937 myeloleukemia cells. Cancer Lett. (Amsterdam, Neth.) 223: 191-201 https://doi.org/10.1016/j.canlet.2004.10.025
  19. Kim, M.-J., H.-J. Chung, S.-M. Park, S. G. Park, D.-K. Chung, M.-S. Yang, and D.-H. Kim. 2004. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF)-based cloning of enolase, ENO1, from Cryphonectria parasitica. J. Microbiol. Biotechnol. 14: 620-627
  20. Kim, S., H. Ko, S. Son, K. J. Shin, and D. J. Kim. 2001. Enantioselective syntheses of (+)-decursinol and (+)-transdecursidinol. Tetrahedr. Lett. 42: 7641-7643 https://doi.org/10.1016/S0040-4039(01)01652-5
  21. Konoshima, M., H.-J. Chi, and K. Hata. 1968. Coumarins from the root of Angelica gigas. Chem. Pharm. Bull. 16: 1139-1140 https://doi.org/10.1248/cpb.16.1139
  22. Lee, J.-K., S.-S. Choi, H.-K. Lee, K.-J. Han, E.-J. Han, and H.-W. Suh. 2003. Effects of ginsenoside Rd and decursinol on the neurotoxic responses induced by kainic acid in mice. Planta Med. 69: 230-234 https://doi.org/10.1055/s-2003-38475
  23. Lee, S., Y. S. Lee, S. H. Jung, K. H. Shin, B.-K. Kim, and S. S. Kang. 2003. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch. Pharmacol Res. 26: 727-730 https://doi.org/10.1007/BF02976682
  24. Lee, S., D.-S. Shin, J. S. Kim, K.-B. Oh, and S. S. Kang. 2003. Antibacterial coumarins from Angelica gigas roots. Arch. Pharmacol Res. 26: 449-452 https://doi.org/10.1007/BF02976860
  25. Lee, Y. Y., S. Lee, J. L. Jin, and H. S. Yun-Choi. 2003. Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas. Arch. Pharmacol Res. 26: 723-726 https://doi.org/10.1007/BF02976681
  26. Moon, C. K., S. C. Lee, Y. P. Yun, B. J. Ha, and C. S. Yook. 1988. Effects of some coumarin derivatives on the bovine lens aldose reductase activity. Arch. Pharmacol Res. 11: 308-311 https://doi.org/10.1007/BF02857767
  27. Munster, P. N., M. Srethapakdi, M. M. Moasser, and N. Rosen. 2001. Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells. Cancer Res. 61: 2945-2952
  28. Nemoto, T., T. Ohshima, and M. Shibasaki. 2000. Enantioselective total syntheses of novel PKC activator (+)-decursin and its derivatives using catalytic asymmetric epoxidation of an enone. Tetrahedr. Lett. 41: 9569-9574 https://doi.org/10.1016/S0040-4039(00)01702-0
  29. Pancholi, V. 2001. Multifunctional alpha-enolase: Its role in diseases. Cell. Mol. Life Sci. 58: 902-920 https://doi.org/10.1007/PL00000910
  30. Yim, D., R. P. Singh, C. Agarwal, S. Lee, H. Chi, and R. Agarwal. 2005. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res. 65: 1035-1044