References
- Angelova, N. and D. Hunkeler. 1999. Rationalizing the design of polymeric biomaterials. Trends. Biotechnol. 17: 409-421 https://doi.org/10.1016/S0167-7799(99)01356-6
- Anderson, A. J. and E. A. Dawes. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472
- Chen, G. Q. and Q. Wu. 2005. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26: 6565-6578 https://doi.org/10.1016/j.biomaterials.2005.04.036
- Choi, M. H. and S. C. Yoon. 1994. Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources including 3-methyl-branched substrates. Appl. Environ. Microbiol. 60: 3245-3254
- Day, A. P. and J. D. Oliver. 2004. Changes in membrane fatty acid composition during entry of Vibrio vulnificus into the viable but nonculturable state. J. Microbiol. 42: 69-73
- Fernandez-Castillo, R., F. Rodriguez-Valera, J. Gonzalez-Ramos, and F. Ruiz-Berraquero. 1986. Accumulation of poly(R-3-hydroxybutyrate) by halobacteria. Appl. Envir. Microbiol. 51:214-216
- Godoy, F., M. Vancanneyt, M. Martinez, A. Steinbuchel, J. Swings, and B. H. Rehm. 2003. Sphingopyxis chilensis sp. nov, a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int. J. Syst. Evol. Microbiol. 53: 473-477 https://doi.org/10.1099/ijs.0.02375-0
- Graner, G., M. Hamberg, and J. Meijer. 2003. Screening of oxylipins for control of oilseed rape (Brassica napus) fungal pathogens. Phytochemistry 63: 89-95 https://doi.org/10.1016/S0031-9422(02)00724-0
- Gurieff, N. and P. Lant. 2007. Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production. Bioresour. Technol. 98: 3393-3403 https://doi.org/10.1016/j.biortech.2006.10.046
- Hadi, R. S., S. M. Mousavi, H. M. Yeganeh, and I. Marc. 2007. Fatty acid and carotenoid production by Sporobolomyces ruberrimus when using technical glycerol and ammonium sulfate. J. Microbiol. Biotechnol. 17: 1591-1597
- Huang, T. Y., K. J. Duan, S. Y. Huang, and C. W. Chen. 2006. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J. Ind. Microbiol. Biotechnol. 33: 701-706 https://doi.org/10.1007/s10295-006-0098-z
-
Ishizaki, A., K. Tanaka, and N. Taga. 2001. Microbial production of poly-D-3-hydroxybutyrate from
$CO_2$ . Appl. Microbiol. Biotechnol. 57: 6-12 https://doi.org/10.1007/s002530100775 - Kim, D. Y., H. W. Kim, M. G. Chung, and Y. H. Rhee. 2007. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J. Microbiol. 45: 87-97
- Kim, T. K., M. T. Vo, H. D. Shin, and Y. H. Lee. 2005. Molecular structure of the PHA synthesis gene cluster from new mcl-PHA producer Pseudomonas putida KCTC1639. J. Microbiol. Biotechnol. 15: 1120-1124
- Kolibachuk, D., A. Miller, and D. Dennis. 1999. Cloning molecular analysis and expression of the polyhydroxyalkanoic acid synthase (phaC) gene from Chromobacterium violaceum. Appl. Environ. Microbiol. 65: 3561-3565
- Koller, M., P. Hesse, R. Bona,C. Kutschera, A. Atlie, and G. Braunegg. 2007. Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol. Biosci. 7: 218-226 https://doi.org/10.1002/mabi.200600211
- Lang, S. and D. Wullbrandt. 1999. Rhamnose lipids-biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 51: 22-32 https://doi.org/10.1007/s002530051358
- Li, R., Q. Chen, and P. G. Wang. 2007. A novel-designed Eshcherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Appl. Microbiol. Biotechnol. 75: 1103-1109 https://doi.org/10.1007/s00253-007-0903-2
- Matsusaki, H., H. Abe, K. Taguchi, T. Fukui, and Y. Doi. 2000. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3. Appl. Microbiol. Biotechnol. 53: 401-409 https://doi.org/10.1007/s002530051633
- Nomura, C. T. and S. Taguchi. 2007. PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Appl. Microbiol. Biotechnol. 73: 969-979
- Ostle, A. G. and J. G. Holt. 1982. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl. Environ. Microbiol. 44: 238-241
- Park, I. J., Y. H. Rhee, N. Cho, and K. Shin. 2006. Cloning and analysis of medium-chain-length poly(3-hydroxyalkanoate) depolymerase gene of Pseudomonas luteola M13-4. J. Microbiol. Biotechnol. 16: 1935-1939
- Pohlmann, A., W. F. Fricke, F. Reinecke, B. Kusian, H. Liesegang, R. Cramm, et al. 2006. Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24: 1227-1229 https://doi.org/10.1038/nbt1006-1227
- Poirier, Y., C. Nawrath, and C. Somerville. 1995. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers in bacteria and plants. Biotechnology 13: 142-150 https://doi.org/10.1038/nbt0295-142
- Rehm, B. H., T. A. Mitsky, and A. Steinbuchel. 2001. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: Establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl. Environ. Microbiol. 67: 3102-3109 https://doi.org/10.1128/AEM.67.7.3102-3109.2001
- Sheu, D. S., Y. T. Wang, and C. Y. Lee. 2000. Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146: 2019-2025 https://doi.org/10.1099/00221287-146-8-2019
- Shin, D. S., M. S. Park, S. Jung, M. S. Lee, K. H. Lee, K. S. Bae, and S. B. Kim. 2007. Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. J. Microbiol. Biotechnol. 17: 1361-1368
- Spiekermann, P., B. H. Rehm, R. Kalscheuer, D. Baumeister, and A. Steinbüchel. 1999. A sensitive viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Microbiol. 171: 73-80 https://doi.org/10.1007/s002030050681
- Stanier, R. Y., N. J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: A taxonomic study. J. Gen. Microbiol. 43: 159-271 https://doi.org/10.1099/00221287-43-2-159
- Steinbuchel, A. and H. V. Valentin. 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128: 219-228 https://doi.org/10.1111/j.1574-6968.1995.tb07528.x
- Suriyamongkol, P., R. Weselake, S. Narine, M. Moloney, and S. Shah. 2007. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants-A review. Biotechnol. Adv. 25: 148-175 https://doi.org/10.1016/j.biotechadv.2006.11.007
- Thompson, J. D., D. G. Higgins, and T. J. Gbson. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
- Van Dyk, M. S., J. L. F. Kock, and A. Botha. 1994. Hydroxy long chain fatty-acids in fungi. World J. Microbiol. Biotechnol. 10: 495-504 https://doi.org/10.1007/BF00367653
- Ward, P. G., G. D. Roo, and K. E O'Connor. 2005. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl. Environ. Microbiol. 71: 2046-2052 https://doi.org/10.1128/AEM.71.4.2046-2052.2005
- Yun, H. S., D. Y. Kim, C. W Chung, H. W. Kim, Y. K. Yang, and Y. H. Rhee. 2003. Characterization of a tacky poly(3-hydroxyalkanoate) produced by Pseudomonas chlororaphis HS21 from palm kernel oil. J. Microbiol. Biotechnol. 13: 64-69