References
- Baek, J. S., T. J. Kim, Y. W. Kim, H. J. Cha, J. W. Kim, Y. R. Kim, S. J. Lee, T. W. Moon, and K. H. Park. 2003. Role of dipeptide at extra sugar-binding space of Thermus maltogenic amylase in transglycosylation activity. J. Microbiol. Biotechnol. 13: 969-975
- Cha, H. J., H. G. Yoon, Y. W. Kim, H. S. Lee, J. W. Kim, K. S. Kweon, B. H. Oh, and K. H. Park. 1998. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur. J. Biochem. 253: 251-262 https://doi.org/10.1046/j.1432-1327.1998.2530251.x
- Cheong, K. A., T. J. Kim, J. W. Yoon, C. S. Park, T. S. Lee, Y. B. Kim, K. H. Park, and J. W. Kim. 2002. Catalytic activities of intracellular dimeric neopullulanase on cyclodextrin, acarbose and maltose. Biotechnol. Appl. Biochem. 35: 27-34 https://doi.org/10.1042/BA20010052
- Cho, H. Y., Y. W. Kim, T. J. Kim, H. S. Lee, D. Y. Kim, J. W. Kim, Y. W. Lee, S. Lee, and K. H. Park. 2000. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta 1478: 333-340 https://doi.org/10.1016/S0167-4838(00)00037-6
- Cho, K. S., S. I. Shin, J. J. Cheong, K. H. Park, and T. W. Moon. 2006. Potential suppression of dental caries by maltosylmannitol produced by Bacillus stearothermophilus maltogenic amylase. J. Microbiol. Biotechnol. 16: 484-486
- Cho, M. H., S. E. Park, M. H. Lee, S. J. Ha, H. Y. Kim, M. J. Kim, S. J. Lee, S. M. Madsen, and C. S. Park. 2007. Extracellular secretion of a maltogenic amylase from Lactobacillus gasseri ATCC33323 in Lactococcus lactis MG1363 and its application on the production of branched maltooligosaccharides. J. Microbiol. Biotechnol. 17: 1521-1526
- Fleming, I. D. and H. F. Pegler. 1963. The determination of glucose in the presence of maltose and isomaltose by a stable, specific enzymic reagent. Analyst 88: 967-968 https://doi.org/10.1039/an9638800967
- Go, Y. H., T. K. Kim, K. W. Lee, and Y. H. Lee. 2007. Functional characteristics of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. BL-31 highly specific for intermolecular transglycosylation of bioflavonoids. J. Microbiol. Biotechnol. 17: 1550-1553
- Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316 https://doi.org/10.1042/bj2800309
- Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788 https://doi.org/10.1042/bj2930781
- Hondoh, H., T. Kuriki, and Y. Matsuurs. 2003. Three-dimensional structure binding of Bacillus stearothermophilus neopullulanase. J. Mol. Biol. 326: 177-188 https://doi.org/10.1016/S0022-2836(02)01402-X
-
Janecek, S., B. Svensson, and B. Henrissat. 1997. Domain evolution in the
$\alpha$ -amylase family. J. Mol. Evol. 45: 322-331 https://doi.org/10.1007/PL00006236 - Jespersen, H. M., E. A. MacGregor, M. R. Sierks, and B. Svensson. 1991. Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem. J. 280: 51-55 https://doi.org/10.1042/bj2800051
-
Kamitori, S., S. Kondo, K. Okuyama, T. Yokota, Y. Shimura, T. Tonozuka, and Y. Sakano. 1999. Crystal structure of Thermoactinomyces vulgaris R-47
$\alpha$ -amylase (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6$\AA$ resolution. J. Mol. Biol. 287: 907-921 https://doi.org/10.1006/jmbi.1999.2647 - Kim, J. S., S. S. Cha, H. J. Kim, T. J. Kim, N. C. Ha, S. T. Oh, et al. 1999. Crystal structure of a maltogenic amylase provides insights into a catalytic versatility. J. Biol. Chem. 274: 26279-26286 https://doi.org/10.1074/jbc.274.37.26279
- Kim, J. W., Y. H. Kim, H. S. Lee, S. J. Yang, Y. W. Kim, M. H. Lee, et al. 2007. Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochim. Biophys. Acta 1774: 661-669 https://doi.org/10.1016/j.bbapap.2007.03.010
- Kim, T. J., C. S. Park, H. Y. Cho, S. S. Cha, J. S. Kim, S. B. Lee, et al. 2000. Role of the glutamate 332 residue in the transglycosylation activity of Thermus maltogenic amylase. Biochemistry 39: 6773-6780 https://doi.org/10.1021/bi992575i
- Kim, T. J., J. H. Shin, J. H. Oh, M. J. Kim, S. B. Lee, S. Ryu, et al. 1998. Analysis of the gene encoding cyclomaltodextrinase from alkalophilic Bacillus sp. I-5 and characterization of enzymatic properties. Arch. Biochem. Biophys. 353: 221-227 https://doi.org/10.1006/abbi.1998.0639
- Kim, T. J., M. J. Kim, B. C. Kim, J. C. Kim, T. K. Cheong, J. W. Kim, and K. H. Park. 1999. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl. Environ. Microbiol. 65: 1644-1651
- Kim, T. J., V. D. Nguyen, H. S. Lee, M. J. Kim, H. Y. Cho, Y. W. Kim, et al. 2001. Modulation of the multisubstrate specificity of Thermus maltogenic amylase by truncation of the N-terminal domain and by a salt-induced shift of the monomer/dimer equilibrium. Biochemistry 40: 14182-14190 https://doi.org/10.1021/bi015531u
- Kuriki, T., H. Kaneko, M. Yanase, H. Takata, J. Shimada, S. Handa, T. Takada, H. Umeyama, and S. Okada. 1996. Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. J. Biol. Chem. 271: 17321-17329 https://doi.org/10.1074/jbc.271.29.17321
- Lee, H. S., J. S. Kim, K. Shim, J. W. Kim, K. Inouye, H. Oneda, et al. 2006. Dissociation/association properties of a dodecameric cyclomaltodextrinase. Effects of pH and salt concentration on the oligomeric state. FEBS J. 273: 109-121 https://doi.org/10.1111/j.1742-4658.2005.05047.x
- Lee, H. S., M. S. Kim, H. S. Cho, J. I. Kim, T. J. Kim, J. H. Choi, et al. 2002. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J. Biol. Chem. 277: 21891-21897 https://doi.org/10.1074/jbc.M201623200
-
Lee, M. H., Y. W. Kim, T. J. Kim, C. S. Park, J. W. Kim, T. W. Moon, and K. H. Park. 2002. A novel amylolytic enzyme from Thermotoga maritima, resembling cyclodextrinase and
$\alpha$ -glucosidase, that liberates glucose from the reducing end of the substrates. Biochem. Biophys. Res. Commun. 195: 818-825 -
MacGregor, E. A., S. Jane ek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the
$\alpha$ -amylase family of enzymes. Biochim. Biophys. Acta 1546: 1-20 https://doi.org/10.1016/S0167-4838(00)00302-2 - Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
-
Nitschke, L., K. Heeger, H. Bender, and G. E. Schulz. 1990. Molecular cloning, nucleotide sequence and expression in Escherichia coli of the
$\beta$ -cyclodextrin glycosyltransferase gene from Bacillus circulans strain No. 8. Appl. Microbiol. Biotechnol. 33: 542-546 - Oh, K. W., M. J. Kim, H. Y. Kim, B. Y. Kim, M. Y. Baik, J. H. Auh, and C. S. Park. 2005. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiol. Lett. 252: 175-181 https://doi.org/10.1016/j.femsle.2005.08.050
- Oh, S. W., M. U. Jang, C. K. Jeong, J. B. Yuk, J. M. Park, K. H. Park, and T. J. Kim. 2006. Development of detection method for cyclomaltodextrinase family genes using degenerate PCR primers. Food Sci. Biotechnol. 15: 967-974
- Park, K. H., M. J. Kim, H. S. Lee, N. Han, S. D. Kim, and J. F. Robyt. 1998. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Carbohydr. Res. 313: 201-213
-
Park, K. H., T. J. Kim, T. K. Cheong, J. W. Kim, B. H. Oh, and B. Svensson. 2000. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the
$\alpha$ -amylase family. Biochim. Biophys. Acta 1478: 165-185 https://doi.org/10.1016/S0167-4838(00)00041-8 - Park, S. H., H. J. Cha, H. K. Kang, J. H. Shim, E. J. Woo, J. W. Kim, and K. H. Park. 2005. Mutagenesis of Ala290, which modulates substrate subsite affinity at the catalytic interface of dimeric ThMA. Biochem. Biophys. Acta 1751: 170-177 https://doi.org/10.1016/j.bbapap.2005.05.004
- Tada, S., Y. Iimura, K. Gomi, K. Takahashi, S. Hara, and K. Yoshizawa. 1989. Cloning and nucleotide sequence of the genomic Taka-amylase A gene of Aspergillus oryzae. Agric. Biol. Chem. 53: 593-599 https://doi.org/10.1271/bbb1961.53.593
-
Takata, H., T. Kuriki, S. Okada, Y. Takesada, M. Iizuka, N. Minamiura, and T. Imanaka. 1992. Action of neopullulanase: Neopullulanase catalyzes both hydrolysis and transglycosylation at
$\alpha$ -(1,4)- and$\alpha$ -(1,6)-glucosidic linkages. J. Biol. Chem. 267: 18447-18452 - Warren, M. S. and S. J. Benkovic. 1997. Combinatorial manipulation of three key active site residues in glycinamide ribonucleotide transformylase. Protein Eng. 10: 63-68 https://doi.org/10.1093/protein/10.1.63
-
Whittle, E. and J. Shanklin. 2001. Engineering
${\Delta}^9$ -16:0-acyl carrier protein (ACP) desaturase specificity based on combinatorial saturation mutagenesis and logical redesign of the castor${\Delta}^9$ -18:0-ACP desaturase. J. Biol. Chem. 276: 21500-21505 https://doi.org/10.1074/jbc.M102129200