Modulation of Hydrolysis and Transglycosylation Activity of Thermus Maltogenic Amylase by Combinatorial Saturation Mutagenesis

  • Oh, Su-Won (Department of Food Science and Technology, Chungbuk National University) ;
  • Jang, Myoung-Uoon (Department of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Chang-Ku (Department of Food Science and Technology, Chungbuk National University) ;
  • Kang, Hye-Jeong (Department of Food Science and Technology, Chungbuk National University) ;
  • Park, Jung-Mi (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Tae-Jip (Department of Food Science and Technology, Chungbuk National University)
  • Published : 2008.08.31

Abstract

The roles of conserved amino acid residues (Va1329-Ala330-Asn331-Glu332), constituting an extra sugar-binding space (ESBS) of Thermus maltogenic amylase (ThMA), were investigated by combinatorial saturation mutagenesis. Various ThMA mutants were firstly screened on the basis of starch hydrolyzing activity and their enzymatic properties were characterized in detail. Most of the ThMA variants showed remarkable decreases in their hydrolyzing activity, but their specificity against various substrates could be altered by mutagenesis. Unexpectedly, mutant H-16 (Gly-Leu-Val-Tyr) showed almost identical hydrolyzing and transglycosylation activities to wild type, whereas K-33 (Ser-Gly-Asp-Glu) showed an extremely low transglycosylation activity. Interestingly, K-33 produced glucose, maltose, and acarviosine from acarbose, whereas ThMA hydrolyzed acarbose to only glucose and acarviosine-glucose. These results propose that the substrate specificity, hydrolysis pattern, and transglycosylation activity of ThMA can be modulated by combinatorial mutations near the ESBS.

Keywords

References

  1. Baek, J. S., T. J. Kim, Y. W. Kim, H. J. Cha, J. W. Kim, Y. R. Kim, S. J. Lee, T. W. Moon, and K. H. Park. 2003. Role of dipeptide at extra sugar-binding space of Thermus maltogenic amylase in transglycosylation activity. J. Microbiol. Biotechnol. 13: 969-975
  2. Cha, H. J., H. G. Yoon, Y. W. Kim, H. S. Lee, J. W. Kim, K. S. Kweon, B. H. Oh, and K. H. Park. 1998. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur. J. Biochem. 253: 251-262 https://doi.org/10.1046/j.1432-1327.1998.2530251.x
  3. Cheong, K. A., T. J. Kim, J. W. Yoon, C. S. Park, T. S. Lee, Y. B. Kim, K. H. Park, and J. W. Kim. 2002. Catalytic activities of intracellular dimeric neopullulanase on cyclodextrin, acarbose and maltose. Biotechnol. Appl. Biochem. 35: 27-34 https://doi.org/10.1042/BA20010052
  4. Cho, H. Y., Y. W. Kim, T. J. Kim, H. S. Lee, D. Y. Kim, J. W. Kim, Y. W. Lee, S. Lee, and K. H. Park. 2000. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta 1478: 333-340 https://doi.org/10.1016/S0167-4838(00)00037-6
  5. Cho, K. S., S. I. Shin, J. J. Cheong, K. H. Park, and T. W. Moon. 2006. Potential suppression of dental caries by maltosylmannitol produced by Bacillus stearothermophilus maltogenic amylase. J. Microbiol. Biotechnol. 16: 484-486
  6. Cho, M. H., S. E. Park, M. H. Lee, S. J. Ha, H. Y. Kim, M. J. Kim, S. J. Lee, S. M. Madsen, and C. S. Park. 2007. Extracellular secretion of a maltogenic amylase from Lactobacillus gasseri ATCC33323 in Lactococcus lactis MG1363 and its application on the production of branched maltooligosaccharides. J. Microbiol. Biotechnol. 17: 1521-1526
  7. Fleming, I. D. and H. F. Pegler. 1963. The determination of glucose in the presence of maltose and isomaltose by a stable, specific enzymic reagent. Analyst 88: 967-968 https://doi.org/10.1039/an9638800967
  8. Go, Y. H., T. K. Kim, K. W. Lee, and Y. H. Lee. 2007. Functional characteristics of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. BL-31 highly specific for intermolecular transglycosylation of bioflavonoids. J. Microbiol. Biotechnol. 17: 1550-1553
  9. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316 https://doi.org/10.1042/bj2800309
  10. Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788 https://doi.org/10.1042/bj2930781
  11. Hondoh, H., T. Kuriki, and Y. Matsuurs. 2003. Three-dimensional structure binding of Bacillus stearothermophilus neopullulanase. J. Mol. Biol. 326: 177-188 https://doi.org/10.1016/S0022-2836(02)01402-X
  12. Janecek, S., B. Svensson, and B. Henrissat. 1997. Domain evolution in the $\alpha$-amylase family. J. Mol. Evol. 45: 322-331 https://doi.org/10.1007/PL00006236
  13. Jespersen, H. M., E. A. MacGregor, M. R. Sierks, and B. Svensson. 1991. Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem. J. 280: 51-55 https://doi.org/10.1042/bj2800051
  14. Kamitori, S., S. Kondo, K. Okuyama, T. Yokota, Y. Shimura, T. Tonozuka, and Y. Sakano. 1999. Crystal structure of Thermoactinomyces vulgaris R-47 $\alpha$-amylase (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 $\AA$ resolution. J. Mol. Biol. 287: 907-921 https://doi.org/10.1006/jmbi.1999.2647
  15. Kim, J. S., S. S. Cha, H. J. Kim, T. J. Kim, N. C. Ha, S. T. Oh, et al. 1999. Crystal structure of a maltogenic amylase provides insights into a catalytic versatility. J. Biol. Chem. 274: 26279-26286 https://doi.org/10.1074/jbc.274.37.26279
  16. Kim, J. W., Y. H. Kim, H. S. Lee, S. J. Yang, Y. W. Kim, M. H. Lee, et al. 2007. Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochim. Biophys. Acta 1774: 661-669 https://doi.org/10.1016/j.bbapap.2007.03.010
  17. Kim, T. J., C. S. Park, H. Y. Cho, S. S. Cha, J. S. Kim, S. B. Lee, et al. 2000. Role of the glutamate 332 residue in the transglycosylation activity of Thermus maltogenic amylase. Biochemistry 39: 6773-6780 https://doi.org/10.1021/bi992575i
  18. Kim, T. J., J. H. Shin, J. H. Oh, M. J. Kim, S. B. Lee, S. Ryu, et al. 1998. Analysis of the gene encoding cyclomaltodextrinase from alkalophilic Bacillus sp. I-5 and characterization of enzymatic properties. Arch. Biochem. Biophys. 353: 221-227 https://doi.org/10.1006/abbi.1998.0639
  19. Kim, T. J., M. J. Kim, B. C. Kim, J. C. Kim, T. K. Cheong, J. W. Kim, and K. H. Park. 1999. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl. Environ. Microbiol. 65: 1644-1651
  20. Kim, T. J., V. D. Nguyen, H. S. Lee, M. J. Kim, H. Y. Cho, Y. W. Kim, et al. 2001. Modulation of the multisubstrate specificity of Thermus maltogenic amylase by truncation of the N-terminal domain and by a salt-induced shift of the monomer/dimer equilibrium. Biochemistry 40: 14182-14190 https://doi.org/10.1021/bi015531u
  21. Kuriki, T., H. Kaneko, M. Yanase, H. Takata, J. Shimada, S. Handa, T. Takada, H. Umeyama, and S. Okada. 1996. Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. J. Biol. Chem. 271: 17321-17329 https://doi.org/10.1074/jbc.271.29.17321
  22. Lee, H. S., J. S. Kim, K. Shim, J. W. Kim, K. Inouye, H. Oneda, et al. 2006. Dissociation/association properties of a dodecameric cyclomaltodextrinase. Effects of pH and salt concentration on the oligomeric state. FEBS J. 273: 109-121 https://doi.org/10.1111/j.1742-4658.2005.05047.x
  23. Lee, H. S., M. S. Kim, H. S. Cho, J. I. Kim, T. J. Kim, J. H. Choi, et al. 2002. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J. Biol. Chem. 277: 21891-21897 https://doi.org/10.1074/jbc.M201623200
  24. Lee, M. H., Y. W. Kim, T. J. Kim, C. S. Park, J. W. Kim, T. W. Moon, and K. H. Park. 2002. A novel amylolytic enzyme from Thermotoga maritima, resembling cyclodextrinase and $\alpha$-glucosidase, that liberates glucose from the reducing end of the substrates. Biochem. Biophys. Res. Commun. 195: 818-825
  25. MacGregor, E. A., S. Jane ek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the $\alpha$-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1-20 https://doi.org/10.1016/S0167-4838(00)00302-2
  26. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  27. Nitschke, L., K. Heeger, H. Bender, and G. E. Schulz. 1990. Molecular cloning, nucleotide sequence and expression in Escherichia coli of the $\beta$-cyclodextrin glycosyltransferase gene from Bacillus circulans strain No. 8. Appl. Microbiol. Biotechnol. 33: 542-546
  28. Oh, K. W., M. J. Kim, H. Y. Kim, B. Y. Kim, M. Y. Baik, J. H. Auh, and C. S. Park. 2005. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiol. Lett. 252: 175-181 https://doi.org/10.1016/j.femsle.2005.08.050
  29. Oh, S. W., M. U. Jang, C. K. Jeong, J. B. Yuk, J. M. Park, K. H. Park, and T. J. Kim. 2006. Development of detection method for cyclomaltodextrinase family genes using degenerate PCR primers. Food Sci. Biotechnol. 15: 967-974
  30. Park, K. H., M. J. Kim, H. S. Lee, N. Han, S. D. Kim, and J. F. Robyt. 1998. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Carbohydr. Res. 313: 201-213
  31. Park, K. H., T. J. Kim, T. K. Cheong, J. W. Kim, B. H. Oh, and B. Svensson. 2000. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the $\alpha$-amylase family. Biochim. Biophys. Acta 1478: 165-185 https://doi.org/10.1016/S0167-4838(00)00041-8
  32. Park, S. H., H. J. Cha, H. K. Kang, J. H. Shim, E. J. Woo, J. W. Kim, and K. H. Park. 2005. Mutagenesis of Ala290, which modulates substrate subsite affinity at the catalytic interface of dimeric ThMA. Biochem. Biophys. Acta 1751: 170-177 https://doi.org/10.1016/j.bbapap.2005.05.004
  33. Tada, S., Y. Iimura, K. Gomi, K. Takahashi, S. Hara, and K. Yoshizawa. 1989. Cloning and nucleotide sequence of the genomic Taka-amylase A gene of Aspergillus oryzae. Agric. Biol. Chem. 53: 593-599 https://doi.org/10.1271/bbb1961.53.593
  34. Takata, H., T. Kuriki, S. Okada, Y. Takesada, M. Iizuka, N. Minamiura, and T. Imanaka. 1992. Action of neopullulanase: Neopullulanase catalyzes both hydrolysis and transglycosylation at $\alpha$-(1,4)- and $\alpha$-(1,6)-glucosidic linkages. J. Biol. Chem. 267: 18447-18452
  35. Warren, M. S. and S. J. Benkovic. 1997. Combinatorial manipulation of three key active site residues in glycinamide ribonucleotide transformylase. Protein Eng. 10: 63-68 https://doi.org/10.1093/protein/10.1.63
  36. Whittle, E. and J. Shanklin. 2001. Engineering ${\Delta}^9$-16:0-acyl carrier protein (ACP) desaturase specificity based on combinatorial saturation mutagenesis and logical redesign of the castor ${\Delta}^9$-18:0-ACP desaturase. J. Biol. Chem. 276: 21500-21505 https://doi.org/10.1074/jbc.M102129200