DOI QR코드

DOI QR Code

Bending, Vibration and Buckling Analysis of Functionally Graded Material Plates

점진기능재료(FGM) 판의 휨, 진동 및 좌굴 해석

  • 이원홍 (진주산업대학교 토목공학과) ;
  • 한성천 (대원과학대학 토목과) ;
  • 박원태 (공주대학교 건설환경공학부)
  • Published : 2008.08.31

Abstract

In this paper, we investigate the static response. natural frequencies and buckling loads of functionally graded material (FGM) plates, using a Navier method. The eigenvalues of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane. bending and shear stiffness of FGM plates art more complicated combination of material properties than a homogeneous element. In order to validate the present solutions, the reference solutions of rectangular plates based on the classical theory are used. The various examples of composite and FGM structures are presented. The present results are in good agreement with the reference solutions.

본 논문에서는 Navier 방법을 이용한 점진기능재료 판의 정적 응답과 고유진동수 그리고 좌굴하중을 연구하였다. S 형상 함수를 이용한 세라믹과 금속의 체적요소의 변화에 따른 점진기능재료 판의 고유치 문제를 연구하였다. 점진기능재료 판의 면내 강성, 휨 강성 및 전단 강성의 수식은 등질 요소보다 복잡한 재료의 성질들로 결합되어 있다. 본 연구의 결과를 검증하기 위해 고전적 이론에 의한 직사각형 판의 결과를 제시하였다. 적층복합 구조 및 S 형상 점진기능재료 구조의 다양한 예제를 제시하였다. 해석결과는 참고문헌의 결고들과 잘 일치함을 알 수 있었다.

Keywords

References

  1. Bao, G. and Wang, L. (1995) Multiple Cracking in Functionally Graded Ceramic/metal Coatings, Int. J.Solids Struct., Vol. 32, pp. 2853-2871. https://doi.org/10.1016/0020-7683(94)00267-Z
  2. Chi, S. H. and Chung, Y. L. (2002) Cracking in Sigmoid Functionally Graded Coating, J. Mech. Vol. 18, pp. 41-53.
  3. Chi, S. H. and Chung, Y. L. (2006) Mechanical behaviorof functionally graded material plates under transverse loadPart I: Analysis, International Journal of Solids and Structures Vol. 43(13), pp. 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
  4. Chi, S. H. and Chung, Y. L. (2006) Mechanical behaviorof functionally graded material plates under transverse load Part II: Numerical results, International Journal of Solids and Structures Vol. 43 (13), pp. 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010
  5. Chung, Y. L. and Chi, S. H. (2001) The Residual Stress of Functionally Graded Materials, J. Chinese Institute of Civil and Hydraulic Engineering Vol. 13, pp. 1-9.
  6. Delale, F. and Erdogan, F. (1983) The Crack Problem for a Nonhomogeneous Plane, J. Appl. Mech. ASME, Vol. 50, pp. 609-614. https://doi.org/10.1115/1.3167098
  7. Hirano, T. and Yamada, T. (1988) Multi-paradigm Expert System Architecture based upon the Inverse Design Concept, International Workshop on Artificial Intelligence forIndustrial Applications, Hitachi, Japan.
  8. Lee, Y. D. and Erdogan, F. (1995) Residual/thermal Stress in FGM and Laminated Thermal Barrier Coatings, Int. J. Frac. Vol. 69, pp. 145-165. https://doi.org/10.1007/BF00035027
  9. Park, T. H., Kim, K. D. and Han, S. C.(2006) Linear Static and Dynamic Analysisof Laminated Composite Plates and Shells using a 4-node Quasi-conforming Shell Element, Compos. Part B-Eng., Vol. 37, No. 2-3, pp. 237-248.
  10. Praveen, G. N. and Reddy, J. N. (1988) Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramicmetal Plates,Int. J. Solids Struct. Vol. 35, pp. 4457-4476.
  11. Reddy, J. N. (1979) Free Vibration of Antisymmetric, Angle-ply Laminated Plates including Transverse Shear Deformation by the Finite Element Method, J. Sound Vibr. Vol. 66, No. 4, pp. 565-576. https://doi.org/10.1016/0022-460X(79)90700-4
  12. Reddy, J. N. (2004) Mechanics of composite plates and shells: Theory and Analysis, 2nd edn. CRC press, Boca Raton.
  13. Zenkour, A. M. (2005) On Vibration of Functionally Graded Plates according to a Refined Trigonometric Plate Theory, Int. J. Struct. Stab. Dyna. Vol. 5, No. 2, pp. 279-297. https://doi.org/10.1142/S0219455405001581

Cited by

  1. Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation vol.11, pp.7, 2010, https://doi.org/10.5762/KAIS.2010.11.7.2661
  2. Nonlocal elasticity effects on free vibration properties of sigmoid functionally graded material nano-scale plates vol.15, pp.2, 2014, https://doi.org/10.5762/KAIS.2014.15.2.1109
  3. A Study of Dynamic Instability for Sigmoid Functionally Graded Material Plates on Elastic Foundation vol.28, pp.1, 2015, https://doi.org/10.7734/COSEIK.2015.28.1.85