DOI QR코드

DOI QR Code

Usage of Multiple Regression Analysis in Prediction System of Process Parameters for Arc Robot Welding

아크로봇 용접 공정변수 예측시스템에 다중회귀 분석법의 사용

  • 이정익 (인하공업전문대학 기계설계과)
  • Published : 2008.08.31

Abstract

It is important to investigate the relationship between weld process parameters and weld bead geometry for adaptive arc robot welding. Howeve, it is difficult to predict an exact back-bead owing to gap in process of butt welding. In this paper, the quantitative prediction system to specify the relationship external weld conditions and weld bead geometry was developed to get suitable back-bead in butt welding which is widely applied on industrial field. Multiple regression analysis for the prediction of process parameters was used as the research method. And, the results of the prediction method were compared and analyzed.

Adaptive 아크 로봇 용접을 위한 용접 공정 변수와 용접 부 형상 사이에 상관관계를 조사하는 것은 중요한 일이다. 하지만 맞대기 용접의 공정에 있어 갭으로 인해 정확한 이면비드를 예측하는 것은 어려운 일이다. 본 연구에서는, 먼저 맞대기 용접을 통해 외부 용접 조건과 용접 비드 형상사이 상관관계가 규명되었고, 이를 응용하여 적절한 이면비드를 얻기 위한 개발이 이루어졌고, 이 연구결과는 산업 전 분야에 폭넓게 사용될 수도 있다. 다중회귀분석법이 공정변수 예측을 위한 연구방법으로 적용되었다. 예측방법의 결과들 또한 비교 및 분석이 이루어졌다.

Keywords

References

  1. J. B. Lee, Y. W. Bang, S. W. Oh and H. S. Chan, 1997, “Control of Bead Geometry in GMAW”, Journal of the Korean Welding Society, Vol. 15, No. 6, pp. 116-123.
  2. W. H. Kim and S. J. Na, 1997, "Numerical Analysis of Weldment by Considering the Convection of Welding Arc and Weld Pool", Journal of the Korean Welding Society, Vol. 15, No. 1, pp. 26-35.
  3. J. H. Ahn, and J. W. Kim, "A study on the Back Bead Control by Using Short Circuit Frequency in GMA Welding of Sheet Metal", Journal of the Korean Welding Society, Vol. 13, No. 4, pp. 330-339.
  4. I. S. Kim, W. H. Kwon and C. E. Park, 1996, "The Effects of Welding Process Parameters on Weld Bead Width in GMAW Processes", Journal of the Korean Welding Society, Vol. 14, No. 2, pp. 33-42.
  5. I. S. Kim, 1997, “A Development of Mathematical Models for Prediction of Optimal Weld Bead Geometry for GMA Welding", Journal of the Korean Welding Society, Vol. 15, No. 3, pp. 250-259.
  6. T. G. Lim, H. S. Cho and K. S. Boo, 1994, “Control of Weld Pool Size in GMA Welding Process using Neural Network”, Journal of the Korean Welding Society, Vol. 12, No. 1, pp. 59-72.
  7. Takagi, T., and Segeno, M., (1985)," Fuzzy identification of systems and its applications to modeling and control", IEEE Trans. on Systems, Man, and Cybernetics, Vol. 15, No. 1, pp.116-132.
  8. Cook, G. E., Andersen K., and Barnett, R. J., (1986), " Keynote address: Feedback and adaptive control in welding", Proceedings of an International Conference on Trends in Welding Research, Gatlinburg, USA, 18-22, pp.891-903.
  9. Raveendra, J., and Parmar, R. S., (1987), " Mathematical models to predict weld bead geometry for flux cored arc welding", Metal Construction, Vol. 19, No. 2, pp.31R-35R.
  10. Chandel, R. S., (1988), "Mathematical modeling of as metal arc weld features", Proceedings of the Fourth International Conference on Modeling of Casting and Welding Processes, April, pp.109-120.
  11. Yang, L. J., Chandel, R. S., and Bibby, M. J., (1993), "The effects of process variables on the weld deposit area of submerged arc welds", Welding Journal, Vol. 72, No. 1, pp.11-s-18-s.
  12. Park, J. W., (2007), "Computational modeling to predict the welding deformation in steel structures", Transactions of The Korea Academia-Industrial cooperation Society, Vol. 8, No. 1, pp. 96-102.
  13. Lee, J. S. and Kim, S. H., (2001), "Thermal analysis of continuous coating welding-coated mild", Transactions of The Korea Academia-Industrial cooperation Society, Vol. 2, No. 1, pp. 7-12.