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Predictive Location Management Strategy Using Two Directional
Consecutive LAs in a Cellular Network

[.K. Chang*:J.S. Hong** - J.P. Kim**+ C.H. Lie*

& Abstract m

In this paper, we have presented a dynamic, predictive location update scheme that takes into account each user's
mobility patterns. A user's past movement history is used to create two-dimensional fransition probability matrix which
makes use of two directional consecutive location areas. A mobile terminal utilizes the transition probability to develop
a predictive path which consists of several predictive nodes and then the location update is saved as fong as a mobile
user follows the predictive path. Using continuous-time Markov chain, cost functions of location update and paging
are derived and it is shown that the number of predictive nodes can be determined optimally. To evaluate the proposed
scheme, simulations are designed and the numerical analysis is carried out. The numerical analysis features user's
mobility patterns and regularity, call arrival rates, and cost ratio of location update to paging. Results show that the
proposed scheme gives lower total location management cost, compared to the other location update schemes.

Keyword : Predictive Location Update, User Mobility Model, Regularity

1. Introduction a cellular network. A cell area is getting smaller
to accommodate more mobile users (MUs) with

Location management is a challenging issue in scarce wireless resources. This problem invokes
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the need of an efficient location management
strategy. Two elemental operations, a location
update and paging, play an important role in lo-
cation management. In the practical cellular net-
work implemented by a location area (LA) based
scheme, a location update is the process that an
MU reports his new LA information to the net-
work when he changes his current LA. In paging,
on the other hand, the network searches for an
MU by simultaneously polling all the cells in the
last reported LA when an incoming call arrives.

According to literature [4, 5, 11], it is known
that the LA-based scheme is not good at reflect-
ing the characteristics of an MU even though it
is easy to implement in a cellular network. On
the contrary, in cell-based topologies [1, 3, 4, 10],
each MU makes up his individual LAs and per-
forms a location update. Such a dynamic scheme
may reduce the signaling traffic but it brings
about a burden on both networks and user’'s mo-
bile terminal due to the excessive processing load
and power consumption. Therefore, we propose
an improved LA-based scheme which exploits
individual user’s mobile characteristics given the
LA information.

In order to reflect individual user’s character-
istics in LA~based topologies, a profile-based
scheme was proposed [5]. The profile-based lo-
cation scheme utilizes a sequential list of the
most likely places each MU can go to for location
management, When an incoming call arrives, the
network sequentially pages LAs within the list
ordered by the steady-state probability. This
probability can be computed by the network that
maintains the frequency of MUS’ visiting each
LA. However, this scheme has a problem that
paging delay may be too long to make a con-
nection between MUs and the steady-state pr—

obability does not reflect the MU’s movement di-
rection or pattern well,

To overcome the problem of profile-based sc-
heme and consider individual user’'s mobility, a
selective location update strategy is introduced
[11]. When an MU crosses the boundary of an
LA, this scheme may not perform a location up-
date on the basis of transition probabilities and
cell dwell times. In this scheme, a random walk
model is used to develop the user mobility model
(UMM) which can reflect MU's movement pa-
tterns. However, the problem of determining an
optimal update LA set for each MU is very hard
to solve because the solution space grows ex-
ponentially as the number of LAs increases. Th-
erefore, a genetic algorithm is introduced to ob-
tain approximate solutions. Also, if an MU moves
out to non-update L.As, paging delay may be a
serious problem because a network searches all
candidate LLAs until it find the MU.

Considering that most MUs have a routine
movement path to a destination and tend to fol-
low the routine path, [4] defines user mobility
pattern (UMP). [4, 1, 10} also address the in-
dividual mobility patterns to predict dynamically
the MU’s future location. However, since those
schemes should be implemented based on re-
al~time update scheme, networks experience he-
avy processing loads and a mobile terminal con-
sumes excessive battery power. In addition, re-
quiring redesigning network architectures and
maintaining a huge volume of data for each user
such as cell IDs, cell entry time, cell residence
time, etc., they have a major drawback to im-
plementation in practice.

In this paper, we propose a predictive location
management strategy using two directional con-
secutive LAs. In the proposed scheme, we use



the information on two directional consecutive

LAs to predict MU’s next movement. Based on
the two previous consecutive LAs that an MU
just passed, the proposed scheme predicts the
next LAs to which the MU possibly moves and
maintains a list of the predicted LAs. If the MU
moves to the predicted LAs, the location update
should be skipped. Because the scheme uses two
consecutive points (LAs) which indicate the di-
rection of movement, the prediction accuracy of
the proposed scheme would be naturally higher
than that of other schemes that use only one
point. Paging is performed sequentially on the
LAs that exist in the list of the predicted LAs.
First, the last updated LA is paged. If an MU
is not found, the predicted LAs are paged in order
they are created. It is shown that the location up-
date cost is reduced dramatically due to the less
location updates while small increase in the pag-
ing cost is observed.

The remainder of this paper is organized as
follows : In section II, we describe the network
topology, UMM, and location update and paging
algorithm to develop the proposed scheme. Loca-
tion management cost is derived in section III
and simulation is discussed in section VI. Section
V addresses the determination of the optimal
value and numerical analysis. Finally, we con-
clude this paper in the last section.

2. System Model

Structured graph models for a cellular network
have been frequently used in solving the location
management problem. Because it is easy to rep-
resent either the geometry or the interconnec-
tions between cells in the structured graph mod-
els, we can simplify the mobility tracking prob-

lem and explain it more effectively. Under the
LA-based system, the network can be repre-
sented by a bound-degree, connected graph
G=(, E), where the node-set V denotes the LAs
and the edge-set E denotes the movement paths
(ie. roads, highways etc.) between pairs of LAs.
In the proposed scheme, we utilize a directed
edge to consider the direction of a movement
path. That is, the direction of an edge is de-
termined by the direction of the two consecutive
LAs which are part of MU’s movement path. In
comparison with the cell-based topology, the
burden of maintaining movement history profiles
in a network or mobile terminal is lightened and
the variation of MU’s velocity and direction is
relatively small because an LA consists of at
least more than one cell [6, 7, 9, 11]. Therefore,
it is expected that the LA-based scheme is much
more appropriate than the cell-based scheme
when we consider the routine movement path of
an MU and predict MU's location.

The terminologies and notations used in this
paper are summarized as follows in <Table 1>.

2.1 Predictive Scheme Using the Transition
Probability Matrix

User mobility model (UMM) plays an impor-
tant role in developing location management
strategies. Generally, an individual MU has in-
herent mobility patterns and the UMM aims to
reflect them. Most studies based on the UMM
assume that those patterns include MU's routine
movement paths or trips like going to work or
school [1, 4, 10]. In this paper, we adopt the UMM
to exploit user's mobile characteristics so that
the prediction accuracy on user's movement can

be improved.
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Table 1) List of terminologies and notations

Terminology/notation

Description

Present node

The node where the last location update occurs

Previous node

The node where an MU resides before moving to the present node

Predictive node

The node with the highest transition probability from the present node or pre-
ceding predictive node

Predictive path of the previous node i and present node j, composed of n con-

PPij(n) secutive predictive nodes
E; The set of adjacent nodes of node j
Ae Call arrival rate (CAR) which includes both outgoing calls and incoming calls
Ae Incoming call arrival rate
P;; Transition probability from node i to node j
Pijiin Transition probability from node i to node k through node j
ij) The rate at which the process leaves state (i, j)
Ak Transition rate from state (i, j) to (j, k) in the edge-based graph model where

(=1, i*Paj), i)

k is not the predictive node

A
(=Lij*Piipy, (o))

Transition rate from state (i, j) to (j, k*) in the edge-based graph model
where k* is the predictive node

Rijs), ks

State transition rate from (i, j, s) to (j, k, s’) in continuous-time Markov chain
(CTMC)

Mijs) Limiting probability of CTMC
N(i) The number of cells that constitute node ¢
n The number of predictive nodes that constitute PP j(n)
UL Unit cost of location update for an MU
Up Unit cost of paging for an MU

Since a random walk model, described by one-
dimensional Markov chain, can easily character-
ize the user traffic flow in PCS networks, it is
widely used for the UMM design which is repre-
sented by the nodes and the transition probability
between the corresponding nodes i and j, Puj
[11]. The transition probability matrix is obtained

[Figure 1] Example of MU's routine movement paths

from user’s past movement history and is utilized
to predict MU’s next location.

For example, there is an MU who has a home
and an office at node 1 and 6, respectively, shown
in [Figure 1]. Based on the past movement his-
tory data collected for 200 days, MU’s routine
paths from home to office are assorted as follows :

® Movement path 1 : 1-2-3-4-6-4-3-2-1 (100)
e Movement path 2 : 1-2-3-5-6-4-3-2--1 (40)
e Movement path 3 : 1-2-3-5-6-5-3-2-1 (20)
¢ Movement path 4 : 1-2-3-4-6-5-3-2-1 (40)

Four routine paths from home to office and
back to home are identified. The number in the
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parenthesis is the frequency of movement paths
the MU chose to follow. In one-dimensional Ma-
rkov chain for the random walk model, the tran-
sition probability, P, is estimated by the rela-
tive frequencies and given in <Table 2>. For in-
stance, the transition probability from node 2 to
node 1, Pz, is 1/2 because the MU arrives at
node 2 400 times but leaves 200 times only for
node 1. Also, if the predictive node j is defined
as the next movement node which has the high-
est transition probability from the present node
i, the predictive node of node 3, for example, is
node 2 because Pz is higher than P3¢ or Pes).

{Table 2) The one-dimensional transition probability
matrix(1-TPM)

(it:;i) 1 2 3 4 5 6
1 - 1 - - - -
2 |2 - - - -
3 V- B 7 RV
4 - - 12 - - 1/2
5 7 N V)
6 - - - 70 0 -

Using the one-dimensional transition proba-
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bility matrix (1-TPM), we can predict the next
movement of an MU from current location. When
an MU resides at each node, the predictive node
is determined as follows :

e Node 2 : The predictive node is either of
node I or node 3 because Pz = Poa.

¢ Node 3 : The predictive node is node 2 be~
cause Ps) < Py <Paa.

o Node 4 : The predictive node is either of
node 3 or node 6 because Puz3 = Pus.

¢ Node 5 : Same as node 4.

As shown in the example, the model with
one-dimensional transition probability some-
times has a problem with determining a pre-
dictive node accurately because it does not con-
sider MU’s movement direction. For example,
assume that an MU goes on the Movement path
1 and the MU is currently at node 3. Then the
MU is presumed to go back to node 2 because
node 2 is the predictive node even if the MU just
arrived at. node 3 through node 2. Therefore, we
could improve the prediction accuracy if we take
the direction of a path into account.

(Table 3> The transition probability matrix of the edge-based graph

State | (1,20 2,1 2,3 G2 G4

(3, 5)

43 46 63 66 64 65

1, 2)
2,1
2,3
(3 2
39
(3, 5
4, 3
(4, 6)
5,3
5, 6
6, 4
(6, 5

7/10

310
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Now, we introduce two-dimensional transition
probability matrix (2-TPM) to capitalize on
MU’s movement direction in which edge (i, j)
means the path from node i to node j and Pk
denotes the transition probability from edge (i,
J) to edge (j, k). The edge (i, j) consists of two
consecutive nodes, i and j, and shows the direc-
tion of a path. <Table 3> for the example in
[Figure 1] shows 2-TPM, also computed by the
relative frequencies of movements. For instance,
Pi3), 34 = 7/10 because the MU arrives at node
3 from node 2 and leaves for node 4 140 times
out of 200, where nodes 2, 3, and 4 mean the pre-
vious node, present node, and predictive node,
respectively.

If we apply the edge-based transition proba-
bility to the example, we can get the predictive
node at each present node as follows :

e Node 2 : If an MU moves from node I (node
3), the predictive node will be node 3 (node 1.

¢ Node 3 : If an MU moves from node 2 (node
4 or node 5), the predictive node will be node
4 (node 2).

¢ Node 4 : If an MU moves from node 3 (node
6), the predictive node will be node 6 (node 3).

¢ Node 5 ! Same as node 4.

In our particular example, 2-TPM predicts
MU'’s next location more precisely than 1-TPM;
in fact, 2-TPM produces all the predictive nodes
correctly no matter which movement path the
MU takes. That's because 2-TPM considers the
direction of an MU with a previous node, which
allows eliminating the backward direction among
the possible movement directions. Actually, even
though there are many routine paths, MU’s next
movement could be anticipated perfectly with the

information from 2-TPM unless MU'’s routine
path shares an edge with other paths.

[7, 8, 12] propose that a mobile terminal can
maintain several kinds of data at the same time
and transmit them to the network. Even though
the size of 2-TPM is double of 1-TPM, the ac-
tual amount of data for 2-TMP does not increase
in proportion to the size of the matrix. However,
it may cause some computing loads on a retwork
which are usually associated with the database
handling cost. Hence, it is necessary that we
consider a trade-off between the prediction ac-
curacy and the computing loads. In reality, it is
difficult to measure the computing loads in prac-
tical networks so that we leave the problem for
further study.

2.2 Location Update and Paging Algorithm

In the existing LA-based scheme, a location
update occurs whenever an MU changes his cur-
rent LA. In the proposed scheme, the location up-
date occurs when the MU deviates from a pre-
dictive path. In other words, the location update
does not occur as long as the MU moves to a
predictive node of the predictive path. The pre-
dictive path consists of n predictive nodes which
should be determined to minimize the location
management cost (LMC); the more predictive
nodes the predictive path has, the less the update
cost but the more the paging cost. The location
update is also triggered after an MU departs
from the n™ predictive node of the predictive
path.

When an MU moves to node j from node ¢ and
a location update has occurred, node j becomes
the present node and the predictive node k is de-

termined such that & maximizes P x in the



proposed UMM using 2-TPM. Similarly, using
the information of directional edge (j, k), the next
predictive node is determined. This procedure

continues until a predictive path, PPy ;(n), con-
tains n predictive nodes.

In [Figure 1], suppose that an MU moves from
node I to node Z, a location update has been just
made, and n =3. Then, nodes I and 2 become the
previous and present node, respectively. Also,
PP12(3) can be set as {3, 4, 6} by using 2-TPM
in <Table 3>. Obviously, location update occurs
only when the MU deviates from PP 2(3) or
departs from the final predictive node, node 6.
The proposed location update procedure is ex-
plained in [Figure 2 (a)l.

If an incoming call arrives for an MU, sequen-
tial paging is performed. The present node is
paged first and if the network can not find the
MU, all the nodes of PPj)n) are paged sequen

o A location update (LU)
occurs

v

Estimate
a predictive path, PP;(n)

v

The MU changes o
from the current LA h

tially. Since the unit cost of a location update is
much more expensive than that of paging, the
proposed scheme can find the optimal n* which
minimizes the total location management cost.
The paging algorithm is shown in [Figure 2 (b)].

According to the proposed algorithm, it is nec-
essary for a mobile terminal to store n nodes
information. Referring to [7, 8, 12], a mobile ter-
minal can maintain several identification lists of
nodes and this method can be easily implemented
in real cellular networks such as IS-54, IS-95,
and GSM.

3. Location Management Cost

3.1 Continuous-Time Markov Chain for the
Proposed Scheme

In this section, we employ continuous-time

An incoming call arrives

v

The network pages
the present LA

v

v

{ LU does not occur Yes

Does the network

Yes A

Does the MU
deviate from PP ;(n)

find the corresponding
MU?

The previous LA ID
is deleted in the
memory and add I

to the counter

The network pages
the predictive path set

Yes

counter index exceed
the threshold value?

(a) Location update algorithm

v

Connecting with
the corresponding MU

(b) Paging algorithm

[Figure 2] The proposed location update and paging algorithms
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Markov chain (CTMC) to derive the cost func-
tion of location management. CTMC includes
two nodes information (i, j) and a counter index.
The counter index which can have the value
from 0 to n is added to the state (i, j) to check
whether the location update should be performed
after moving. If the counter index has the value
of 0, it indicates the completion of location update
at the current node; otherwise, non-location up-
date occurs because an MU follows the pre-
dictive path. We assume that the cell residence
time of an MU and inter-arrival time between
calls are exponentially distributed with parame-
ter m;j and A. [Figure 3] represents the state
transition rates of CTMC in the proposed scheme
using two directional consecutive nodes.

- Non-location update
(NLU)

Nie LU, kEE, and kek*

(a) counter index = 0

* Implicit LU

\- LU, VkeE

(b) counter index =n

» Implicit LU

: LU, k€E and k#k*

(c) 0 < counter index = s < n

[Figure 3] The state transition rates of CTMC in
the proposed scheme

In [Figure 3 (a)], the state (i, j, 0) means that
an MU moves from node i to node j and a location
update is made. That is, node i and j becomes
the previous and present node, respectively.
Subsequently, the predictive path PPqj(n) is
generated and the counter index set to 0. If the
MU moves to node k* which is the predictive
node, the location update does not occur and the
counter index increases by 1. If the MU moves
to any node k other than node k*, the _location
update should be performed with the counter in—
dex = 0. Then, in this case, the state transition

rates can be described as follows :

Riijor, Gaeny = A = By - Fijy, Ga (1)
and
R 1), G = A = By~ Bijy, 6o 2)

[Figure 3 (b)] illustrates two states after the
counter index reaches n. The state transition
rates are given by (3) and (4). The equation (3)
represents the state that an MU gets a call so
that the location update is performed automati-
cally, which is called the implicit location update
and excluded from location update cost. The
equation (4) means that the MU moves out of
the n™ predictive node j and the location update

is performed.
Rijm, Gy =% =ty - e ) 3
R(i,j,n), (ok,0) = Aijk =Hi gy - P(i,j)» (f,%) (4)

where P. is a call arrival probability.

[Figure 3 (c)] depicts the states that an MU
receives a call or moves to other node when an
MU is at the s™ predictive node j. Obviously, if
the MU moves to the predictive node k*, non-lo-
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cation update occurs and the counter index in-
creases by I; otherwise, location update is trig-
gered. The state transition rates are given as fol-

lows
Riijsn o =4 =ty - B ®)
Riijo ikor = = Hu gy - Fapiin (6)
Ri gy amssny = A = My - Fijy. Gy M

Then, the limiting probabilities 7 are the
unigue nonnegative solution of the following
equations :

Hii,jy R js) =Z:=|Zv(x,y)”(x.y,m) ’ R(x.y.m).(i.j.s)
*Zv(x,y,”(x.y,s) Ry fors=o. (g

Hipy Ry = Zv(,,y)ﬂ(X.y.S—l) ’ R(X.y.:—l)' (i,/.8)

Jor1<s<n, 9)

and

Zvu,y) Zw Ty = 1. (10)

3.2 Location Update Cost and Paging Cost

In this section, we derive the cost function of
the location update and paging. First, the location
update cost per unit time for an MU, Cry, is given
by

n-1

Zw ZV(:’,]’) iy " ik ) U, (11)

In (11), the implicit location update is not con-
sidered as well as additional data handling costs
required to maintain the 2-TPM. The first term
of the equation is related to MU’s movement
which results in a location update where nodes

&4 499 ol 8 o3
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i, j, and k are the previous, present, and non-pre-
dictive node, respectively. The second term de-
notes that the counter index reaches n and then
a location update is performed regardless of
MU’s next location.

The paging cost per unit time for an MU, Cp,
is given by

= . ' . ;
Cp= {ZV(“) 7, j,0) A N(j)
n ' s
+ Zs:l ZV(i,j)(”(i’j’S) A Zv, €PPy ;y(mhr=]

N(v,))} Uy, 12)

where vy is the 7" predictive node of PPy (n).
In (12), A is the incoming call arrival rate and
assumed to be equal to A,/2 without loss of
generality. The first term is about the situation
that an MU stays at the present node j and is
reached immediately by the first paging. The
second term means that the sequential paging is
performed on the predictive path after an MU
moves to a predictive node. By using (12) and
(13), the LMC can be obtained as follows :

LMC =C,,+C,. (13)

4. Simulations

In section II, we explained that the prediction
accuracy on MU'’s next movement can be im-
proved using the information from 2-TPM when
an MU has routine paths and in section III, equa~
tions to compute the location management cost
were derived on the basis of continuous-time
Markov chain, where the transition probabilities
are also used as major input data. In this section,
how adequate data are gathered to build 2-TPM
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[Figure 4] Seoul area and its graphical representation for LAs

through simulations is discussed.

In reality, it is hardly possible to get real data
on MU's movement paths because of privacy
issues. Therefore, sometimes, arbitrary data are
used for the convenience [11] but most of rele-
vant studies heavily rely on simulations to obtain
data and justify their logical grounds. In our
analysis, instead of using arbitrary numbers, a
simple simulation procedure is developed to gen-
erate data for transition probability between
neighboring nodes. An MU is supposed to have
one or more routine paths and a certain level of
regularity on each routine path.

In literature [4] user’s mobile characteristics
such as a tendency of following certain route in
daily life is defined as user mobility pattern
(UMP) and frequency or probability that an MU
complies with her UMP is stated as regularity.
MUs have different regularities according to
their jobs; for instance, office workers may have
high regularity while salesperson’s regularity
seems low. Such an effect of regularity is also
considered and tested in our simulation process.

In simulations, we take advantage of geo-

graphical information of Seoul in Korea. [Figure
4] shows the Seoul area and its graphical repre~
sentation for a cellular network which is divided
into 23 LAs. In order to simplify the simulation
process, it is assumed that the size of every LA
is equal, composed of 40 cells. We focus on one
specific MU to generate movement history data
which will be used to calculate the transition
probability. The MU is supposed to have a home
LA but many destinations to go. First, we decide
the number of UMPs and assign different regu-
larities to them. Each UMP is a routine path
which has a predetermined destination from a
home LA; other paths have randomly selected
destinations. The path between home and desti-
nation is determined by the shortest distance
method (SDP). Then, the routine paths with reg-
ularity are created quite more frequently than
other paths. [Figure 5] represents a procedure of

simulations.

Begin ;
Input parameters {
G(V, E) information ;
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Home node ; UMP nodes ;
Regularity ;
b
Initialization {
Movement_Profile = Null ;
}s
Collect_Movement_Path {
For(i = 1, i++, Big_Number)
rm = random_number._generation{0, 1} ;
Generate_Destination {
If {m < regularity,
A destination is selected among UMPs ;
Add the UMP to Movement_Profile ;
Retum ;
Else A destination is selected randomly ;
The path is determined by SDP ;
Add the path to Movement_Profile ;
Return ;
b
b
}s
Build_1-TPM{
Count the frequency (f;) between node i to node j
for all i and j from Movement_Profile ;
Si=Sum f; for all j ;
Calculate P;j = f; /S; for all { and j ;
Build 1-TPM ;
3
Build_2-TPM{
Count the frequency (fij, () between (i, j) to
G, k)
for all i, j, and k from Movement_Profile ;
Sty = Sum fij), gw for all (i, j) 7
Calculate Frip, Gw = fij), oo /Sup for all i, j, and k ;
Build 2-TPM ;
b

End ;

[Figure 5] Procedure of simulations

5. Numerical Analysis

5.1 Optimal n*

Numerical analysis is conducted to find out the
optimal number of predictive nodes n*. The opti-

A A998 o4 oz 942 Bl A 5

mal n* that minimizes the location management
cost (LMC) does exist because the LMC is the
sum of location update cost and paging cost. The
cost function of location update is monotonously
decreasing as the number of predictive nodes in—
creases because no location update is required as
long as an MU moves along the predictive nodes.
However, the cost function of paging is monoto-
nously increasing because more predictive nodes
mean more paging nodes and eventually, more
paging cost. Therefore, the sum of two cost fun-
ctions should have a point n* that produces mini-
mum LMC, which can be easily shown on a
graph, too.

In the next section, optimal r* is sought under
various conditions which are mostly related to
user’s mobile properties like number of UMPs,
level of regularity, and incoming call rates, etc.
Thus, each MU should have his own optimal rn*
different from others. Those factors are consid-
ered to explain how they affect the optimal n*
of a predictive path.

5.2 Sensitivity analysis

First, the relationship between number of pre-
dictive nodes (n) and LMC is analyzed for differ-
ent call arrival rates (CARs) and regularities
when an MU has one UMP and Up,/Up = 10 .
[Figure 6] shows that there exists one specific
value n* which minimizes the UMC for each
CAR regardless the level of regularity. It is ob-
served that smaller n* is required in order to re-
duce the paging cost as the CAR increases and
high regularity produces lower LMC than low
regularity. It is worth to mention that high regu-
larity seems to maintain smaller 7+ than low reg-
ularity in order to balance the location update
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13] Regularity=0.8

12 —=&— CAR=0.001
—e— CAR=0.002
—A— CAR=0.003
104 { —%— CAR=0.004
—&— CAR=0.005

9 —e— CAR=0.01
8 /

LMC

19] Regularity=0.4

] | —=—caRr=0.001
174 | —8— CAR=0.002
164 | —— CAR=0.003
—w— CAR=0.004
—&— CAR=0.005

144 | —e—cAR=0.01
o
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2 3
Number of predictive nodes (n)

(a) High regularity

2 3
Number of predictive nodes (n)

(b) Low regularity

[Figure 6] Number of predictive nodes versus LMC for the different CARs

cost and paging cost. In other words, in general
an MU with low regularity tends to have bigger
n* to cut down the location update cost because
low regularity by nature may require more fre-
quent location updates than high regularity.
[Figure 7] illustrates the change of the LMC and
optimal n* for various levels of regularity in
details. For example, as the level of regularity
goes up, smaller optimal n* is required because

more predictive nodes just incurs unnecessary
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[Figure 7] Number of predictive nodes versus
LMC for various levels of regularity

paging cost.

Next, the same investigation info LMC and n*
is made for the various ratios of location update
cost to paging cost when the CAR is fixed to
0.002. The result is somewhat obvious that it re-
quires bigger n* to contain the location update
cost if the cost ratio increases, as shown in
[Figure 8].

Finally, the effect of number of UMPs is
examined. {Figure 9] depicts that optimal n* and
LMC get bigger as more UMPs an MU has ; in
[Figure 9 (a)], for example, one UMP corre-
sponds to n* = 2 and LMC = 2.815 while four
UMPs to n* = 4 and LMC = 5602. Therefore,
it seems that increase in the number of UMPs
turns out the same effect as lowering the level
of regularity, which results in more frequent
updates. Also, the similar results are observed
when more than one UMP are used for the sensi-
tivity analysis.

5.3 Comparison with other schemes

The proposed scheme is compared with other
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schemes such as LA-based scheme, profile-
based scheme, and one-dimensional Markov
chain scheme (1-TPM). The LA-based scheme
is considered as static because location update
is performed independent of each user’s mobility
and call arrival patterns while the other schemes
as dynamic. In the comparisons, based on the re-
sult of section 5.2, values 2 and 4 are given to
the optimal n* for high and low regularity, res~
pectively.

[Figure 10] shows the relationship between

LMC and CAR for various schemes and two dif-
ferent regularities. In the figure, the two sch-
emes, Proposed and 1-dim. MC, outperforms the
other two exceedingly because they are more
adaptive to user's mobility using the transition
probability. By the same reason, the proposed
scheme results in less LMC than the 1-dim. MC
scheme. It is also noticed that the proposed
scheme seems affected much more by the de-
crease in the level of regularity than the 1-dim. MC
scheme because the cost difference between Pro-
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posed and 1-dim. MC shrinks at low regularity.
[Figure 11] also exhibits that Proposed and
1-dim. MC result in lower cost than the other
two for different cost ratios (U/Up). Especially,
the difference in the LMC between Proposed and
1-dim. MC is enlarged as the cost ratio increases.
In other words, the location update cost of the
1-dim. MC scheme grows faster than that of the
proposed scheme when the higher location up-
date cost is given, which particularly implies
that the proposed scheme anticipates user’s
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next location more accurately than the 1-dim
MC scheme so that it requires less location up-
dates.

Overall, the enhanced predictability with 2-
TPM makes the proposed scheme more adaptive
to user's mobility patterns and more cost-effi-
cient than the compared schemes.

6. Conclusions

In this paper, we have presented a dynamic,
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predictive location update scheme that takes into
account each user's mobility patterns. User’s
past movement history is used to create two di-
mensional transition probability matrix (2-TPM)
which makes use of two directional consecutive
nodes. Then, a mobile terminal utilizes the in-
formation from 2-TPM to predict user's next
movement. The proposed scheme is based on the
LA-based topology and relatively easy to im-—
plement.

The mobile terminal estimates a predictive
path which consists of several predictive nodes
(LAs) and then, the location update is saved as
long as an MU follows the predictive path. Also,
it has been shown that the number of predictive
nodes can be determined optimally. Then con-
tinuous-time Markov chain is employed to derive
cost functions of location update and paging.

To evaluate the proposed scheme, simulations
are designed and the numerical analysis is car-
ried out. In the simulations, data are collected to
establish 2-TPM. The simulated environment
consists of 23 LAs, each LA of 40 cells, repre-
senting the geographical area of Seoul. The nu-
merical analysis features user's mobility patterns
and regularity, call arrival rates, and cost ratio
of location update to paging. Results show that
the proposed scheme gives lower total location
management cost (LMC), compared to the other
location update schemes.

On the other hand, the proposed scheme incurs
extra storage and processing requirement at the
mobile terminal or base station. Also, the pre-
diction accuracy on user’s next movement de-
creases if the mobile user has two or more rou-
tine paths which share at least one edge. Howe-
ver, such extra overhead and prediction defi-

ciency may be outweighed by various merits of

the proposed scheme.
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