DOI QR코드

DOI QR Code

A Study on the Disinfection of Coliform Group in the Effluent of Sewage Plant by High Voltage Electric Field Treatment

고전압 전기장을 이용한 하수처리장 방류수 중의 대장균군 소독에 관한 연구

  • Lee, Min-Gyu (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Chung, Geun-Sik (Division of Civil & Environmental Engineering, Cheju National University) ;
  • Kam, Sang-Kyu (Division of Civil & Environmental Engineering, Cheju National University)
  • 이민규 (부경대학교 응용화학공학부) ;
  • 정근식 (제주대학교 토목환경공학) ;
  • 감상규 (제주대학교 토목환경공학)
  • Published : 2008.07.31

Abstract

Using high voltage electric fields induced by high voltage AC (10-12 kV/cm, 20 kHz) and pulsed (20-30 kV/cm, 40 Hz) electric field generator as a semipermanent and environment-friendly disinfecting apparatus, the disinfection effect of coliform group in the effluent of sewage plant was investigated. The effects of electric field strength, treatment time, discharge area of a discharge tube, water quality factors (electric conductivity, pH and SS) on its death rate were examined. The death rate of coliform group was increased with increasing electric field strength and treatment time. For AC and pulsed electric field generator, the critical electric field strength was 6 kV/cm and 2 kV/cm, respectively, and the critical treatment time was 5 min and 2 min, respectively, regardless of electric field strength. Comparing the death rate of coliform group by AC and pulsed electric fields used in this study, its death rate was higher for the latter than the former, but did not increase linearly with increasing electric field strength. The results obtained for the effects of discharge area, electric conductivity, pH and SS on the death rate of coliform group using AC electric field (12 kV/cm, 20 kHz) were as follows: its death rate showed the trend to increase linearly with increasing discharge area; for the effect of electric conductivity, its death rate was increased with increasing electric conductivity, regardless of ionic species, increased with increasing cationic valency, but was similar between the same cationic valency; the pH $5{\sim}9$ used in this study did not affect its death rate; its death rate was decreased with increasing SS concentration.

Keywords

References

  1. 배영석, 송민형, 정경훈, 권동식, 이기공, 2004, 하수 염소 소독시 소독부산물 발생 특성, 한국물환경학회지, 20(3), 275-280
  2. Gossling B. S., 1960, UK Patent 845,743
  3. Dovenspeck H., 1960, German Patent 1,237, 541
  4. Sale A. J. H., Hamilton W. A., 1967, Effects of high electric fields on microorganisms I. Killing of bacteria and yeasts, Biochim. Biophys. Acta, 148, 781- 788 https://doi.org/10.1016/0304-4165(67)90052-9
  5. Sale A. J. H., Hamilton W. A., 1967, Effects of high electric fields on microorganisms II. Mechanism of action of the lethal effect, Biochim. Biophys. Acta, 148, 789-800 https://doi.org/10.1016/0304-4165(67)90053-0
  6. Sale A. J. H., Hamilton W. A., 1968, Effects of high electric fields on microorganisms III. Lysis of erythrocytes and protoplasts, Biochim. Biophys. Acta, 163, 37-43 https://doi.org/10.1016/0005-2736(68)90030-8
  7. Hulsheger H., Niemann E. G., 1980, Effects of high-voltage pulses on E. coli K12, Radiat. Environ. Biophys., 18, 281-288 https://doi.org/10.1007/BF01324271
  8. Hulsheger H., Potel J., Niemann E. G., 1981, Killing of bacteria with electric pulses of high field strength, Radiat. Environ. Biophys., 20, 53-65 https://doi.org/10.1007/BF01323926
  9. Hulsheger H., Potel J., Niemann E. G., 1983, Electric field effects on bacteria and yeast cells, Radiat. Environ. Biophys., 22, 149-162 https://doi.org/10.1007/BF01338893
  10. Zimmermann U., 1986, Electrical breakdown, electropermeabilization and electrofusion, Rev. Physiol. Biochem. Pharmacol., 105, 176-256
  11. Zimmermann U., Arnod W. M., Mehrle W., 1988, Biophysics of electroinjection and electrofusion, J. Electrostat., 21, 309-345 https://doi.org/10.1016/0304-3886(88)90035-6
  12. 김경탁, 1998, 고전압 펄스 전기장 처리에 의한 사 과주스의 미생물 불활성화와 저장중 품질변화, 박 사학위논문, 중앙대학교, 서울
  13. 정관재, 1999, 고전압 펄스 전기장을 이용한 우유의 살균, 석사학위논문, 연세대학교, 서울
  14. 문권주, 2000, 고전압 펄스 전기장을 이용한 ty- rosinase의 불활성화에 관한 연구, 석사학위논문, 연세대학교, 서울
  15. 신정규, 2000, 고전압 펄스 전기장에 의한 Sacchcromyces cerevisiae의 불활성화 원리, 석사학위논문, 연세대 학교, 서울
  16. 이희규, 소명환, 2000, 고전압 펄스에 의한 전기 살 균에서 임펄스 전압 파형의 영향, 산업식품공학, 4(3), 136-140
  17. 이동훈, 2004, 구형 $[SiO_2}$를 갖는 수방전관의 전계 해석 및 대장균의 제거특성, 전기학회논문집, 53C(2), 103-108
  18. 이동훈, 박재윤, 2004, 구형 ${ZrO_2}$를 충진한 방전관 의 수질 변환 및 대장균의 제거 특성, 전기학회논문집, 53C(3), 143-148
  19. Jung K. J., Shin J. K., Ha K. Y., Cho H. Y., Pyun Y. R., 2000, Pasteurization of milk by pulsed electric fields in a continuous system, 8th Int'l Cong. Eng. and Food, M-07
  20. 이동훈, 2003, 고전계하 수방전관내의 대장균 제거 에 관한 연구, 박사학위논문, 경남대학교, 마산
  21. Vega-Mercado H., Pothakamury U. R., Chang F. J., Barbosa-Canovas G. V., Swanson B. G., 1996, Inactivation of Esherichia coli by combining pH, ionic strength and pulsed electric fields hurdles, Food Res. Int'l, 29(2), 117-121 https://doi.org/10.1016/0963-9969(96)00015-4
  22. Ho S. Y., Mittal G. S., 1996, Electroporation of cell membrane: a review, Crit. Rev. Biotechnol., 16, 349- 362 https://doi.org/10.3109/07388559609147426
  23. Padan E., Zilberstein D., Schuldiner S., 1981, pH homeostasis in bacteria, Biochim. Biophys. Acta, 650, 151 https://doi.org/10.1016/0304-4157(81)90004-6
  24. Booth I. R., 1975, Regulation of cytoplasmic pH in bacteria, Microbio. Rev., 49(4), 359

Cited by

  1. Inactivation of Microorganisms in Sewage Using a Pilot Plasma Reactor vol.39, pp.3, 2013, https://doi.org/10.5668/JEHS.2013.39.3.289
  2. Inactivation of Sewage Microorganisms using Multi-Plasma Process vol.23, pp.5, 2014, https://doi.org/10.5322/JESI.2014.5.985