DOI QR코드

DOI QR Code

Supported Iron Nanoparticles on Activated Carbon, Polyethylene and Silica for Nitrate Reduction

  • Cho, Mi-Sun (Department of Chemical Education, Sunchon National University) ;
  • Kim, E-Wha (Department of Environmental Education, Sunchon National University) ;
  • Lee, Kyoung-Hee (Department of Environmental Education, Sunchon National University) ;
  • Ahn, Sam-Young (Department of Environmental Education, Sunchon National University)
  • Published : 2008.07.31

Abstract

The use of support materials on the nanoparticle synthesis and applications has advantages in many aspects; resisting the aggregation and gelation of nanoparticles, providing more active sites by dispersing over the supports, and facilitating a filtering process. In order to elucidate the influence of the supports on the nitrate reduction reactivity, the supported iron nanoparticles were prepared by borohydride reduction of an aqueous iron salt in the presence of supports such as activated carbon, silica and polyethylene. The reactivity for nitrate reduction decreased in the order of unsupported Fe(0) > activated carbon(AC) supported Fe(0) > polyethylene(PE) supported Fe(0) ${\ge}$ silica supported Fe(0). Rate constants decrease with increasing initial nitrate concentration implying that the reaction is limited by the surface reaction kinetics.

Keywords

References

  1. Wang C. B., Zhang W. X., 1997, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31, 2154-2156 https://doi.org/10.1021/es970039c
  2. Li F., Vipulanandan C., Mohanty K. K., 2003, Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene, Colloids Surf. A., 223, 103-112 https://doi.org/10.1016/S0927-7757(03)00187-0
  3. Ponder S. M., Darab J. G., Mallouk T. E., 2000, Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron, Environ. Sci. Technol., 34, 2564-2569 https://doi.org/10.1021/es9911420
  4. Sohn K., Kang S. W., Ahn S., Woo M., Yang S. K., 2006, Fe(0) nanoparticles for nitrate reduction: stability, reactivity and transformation, Environ. Sci. Technol., 40, 5514-5519 https://doi.org/10.1021/es0525758
  5. Buschow K. H. J., 2001, Supported catalysts, In: Encyclopedia of materials: Science & Technology, Elsevier, 9, 8986-8991
  6. Zhu B. W., Lim T. T., Feng J., 2006, Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale ${Fe^0}$ particles supported on chitosan and silica, Chemosphere, 65, 1137-1145 https://doi.org/10.1016/j.chemosphere.2006.04.012
  7. Shriver D. F., Drezdon M. A., 1986, The manipulation of air-sensitive compounds, 2nd ed., Wiley, New York
  8. Glavee G. N., Klabunde K. J., Sorensen C. M., Hadjipanayis G. C., 1995, Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and ${Fe_2}$B powders, Inorg. Chem., 34, 28-35 https://doi.org/10.1021/ic00105a009
  9. Clesceri L. S., Greenberg A. E., Eaton A. D., 1998, Standard methods for the examination of water and wastewaters, 20th ed., American Public Health Association, Washington D.C., 4-108
  10. Liu Y., Majetich S. A., Tilton R. D., Sholl D. S., Lowry G. V., 2005, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties, Environ. Sci. Technol., 39, 1338-1345 https://doi.org/10.1021/es049195r
  11. Carpenter E. F., Calvin S., Stroud R. M., Harris V. G., 2003, Passivated iron core-shell nanoparticles, Chem. Mater., 15, 3245-3246 https://doi.org/10.1021/cm034131l
  12. Alowitz M. J., Scherer M. M., 2002, Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal, Environ. Sci. Technol., 36, 299-306 https://doi.org/10.1021/es011000h
  13. Miehr R., Tratnyek M. M., Bandstra J. Z., Scherer M. M., Alowitz M. J., Bylaska E. J., 2004, Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate, Environ. Sci. Technol., 38, 139- 147 https://doi.org/10.1021/es034237h
  14. Zawaideh L. L., Zhang T. C., 1998, The effect of pH and addition of an organic buffer(HEPES) on nitrate transformation in ${Fe^0}$-water systems, Water Sci. Technol., 38, 107-115
  15. Cheremisinoff N. P., Cheremisinoff P. N., 1993, Carbon adsorption for pollution control, PTR Prentice Hall, 19pp
  16. Yang R. T., 조순행 역, 2006, 흡착제, 그 원리와 응 용, 지구문화사, 149pp
  17. Arnold W. A., Roberts A. L., 2000, Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles, Environ. Sci. Technol., 34, 1794-1805 https://doi.org/10.1021/es990884q
  18. Till B. A., Weathers L. J., Alvarez P. J. J., 1998, Fe(0)-supported autotrophic denitrification, Environ. Sci. Technol., 32, 634-639 https://doi.org/10.1021/es9707769
  19. Froment G. F., Bischoff K. B., 1992, Chemical reactor analysis and design, 2nd ed., John Wiley & Sons, 90pp

Cited by

  1. The influence of activated carbon support on nitrate reduction by Fe(0) nanoparticles vol.29, pp.8, 2012, https://doi.org/10.1007/s11814-011-0292-1