DOI QR코드

DOI QR Code

Localization of Outdoor Wheeled Mobile Robots using Indirect Kalman Filter Based Sensor fusion

간접 칼만 필터 기반의 센서융합을 이용한 실외 주행 이동로봇의 위치 추정

  • 권지욱 (아주대학교 전자공학부) ;
  • 박문수 (아주대학교 전자공학부) ;
  • 김태은 (아주대학교 전자공학부) ;
  • 좌동경 (아주대학교 전자공학부) ;
  • 홍석교 (아주대학교 전자공학부)
  • Published : 2008.08.01

Abstract

This paper presents a localization algorithm of the outdoor wheeled mobile robot using the sensor fusion method based on indirect Kalman filter(IKF). The wheeled mobile robot considered with in this paper is approximated to the two wheeled mobile robot. The mobile robot has the IMU and encoder sensor for inertia positioning system and GPS. Because the IMU and encoder sensor have bias errors, divergence of the estimated position from the measured data can occur when the mobile robot moves for a long time. Because of many natural and artificial conditions (i.e. atmosphere or GPS body itself), GPS has the maximum error about $10{\sim}20m$ when the mobile robot moves for a short time. Thus, the fusion algorithm of IMU, encoder sensor and GPS is needed. For the sensor fusion algorithm, we use IKF that estimates the errors of the position of the mobile robot. IKF proposed in this paper can be used other autonomous agents (i.e. UAV, UGV) because IKF in this paper use the position errors of the mobile robot. We can show the stability of the proposed sensor fusion method, using the fact that the covariance of error state of the IKF is bounded. To evaluate the performance of proposed algorithm, simulation and experimental results of IKF for the position(x-axis position, y-axis position, and yaw angle) of the outdoor wheeled mobile robot are presented.

Keywords

References

  1. 박문수, 홍석교, '저가 관성센서의 오차보상을 위한 간접 형 칼만필터 기반 센서융합과 소형 비행로봇의 자세 및 위치 결정,' Journal of Control, Automation, and Systems Engineering, vol. 13, no. 7, pp. 637-648, 2007. 7 https://doi.org/10.5302/J.ICROS.2007.13.7.637
  2. S. Y. Cho and W. S. Choi, 'Robust positioning technique in lowcost DR/GPS for land navigation,' IEEE Trans. On Instrumentation and Measurement, vol. 55, no. 4, pp. 1132-1142, Aug. 2006 https://doi.org/10.1109/TIM.2006.877718
  3. L. B. Cremean, et. al., 'Alice: An information-rich autonomous vehicle for high-speed desert navigation,' Journal of Robotic Systems, vol. 23, no. 9, pp. 777-810, Sep. 2006
  4. D. M. Bevly, 'Global Positioning System(GPS): A low-cost velocity sensor for correcting inertial sensor errors on ground vehicle,' Journal of Dynamic Systems Measurement and Control Trans. of The ASME, vol. 126, no. 2, pp. 255-264, Jun. 2004 https://doi.org/10.1115/1.1766027
  5. J. P. Wang, W. F. Tian, and Z. H. Jin, 'Study on integrated micro inertial navigation systems/GPS for land vehicles,' Proc. intelligent transportation systems, vol. 2, pp. 1650-1553, Oct. 2003
  6. G. Ippoliti, L. Jetto, and S. Longhi, 'Localization of mobile robots: Development and comparative evaluation of algorithms based on odometric and inertial sensors,' Journal of Robotic Systems, vol. 22, no. 12, pp. 725-735, Dec. 2005 https://doi.org/10.1002/rob.20095
  7. S. Panzieri, F. Pascucci, and G. Ulivi, 'An outdoor navigation system using GPS and inertial platform,' IEEE Trans. On Mechatronics, vol. 7, no. 2, pp. 134-142, Jun. 2002 https://doi.org/10.1109/TMECH.2002.1011250
  8. S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey, 'Smoother based 3D attitude estimation for mobile robot localization,' Proc. of IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 1979- 1986, Oct. 1999
  9. B. Barshan and H. Durrant-Whyte, 'Inertial navigation systems for mobile robots,' IEEE Trans. on Robotics and Automation, vol. 11, no. 3, pp. 328-342, Jun. 1995 https://doi.org/10.1109/70.388775
  10. 정광윤, 조영석, 심덕선, '무인탐사체 항법을 위한 GPS/ INS 초강결합 성능분석,' 제어.자동화.시스템공학 논문지, 제 12 권, 제 8 호, pp. 773-779, Aug. 2006 https://doi.org/10.5302/J.ICROS.2006.12.8.773
  11. P. Li, W. TianMiao, L. JianHon, and W. Song, 'An attitude estimate approach using MEMS sensors for small UAVs,' IEEE International Conference on Industrial Informatics, pp. 1113- 1117, Aug. 2006
  12. A. K. Broun, 'GPS/INS uses low-cost MEMS IMU,' IEEE Aerospace and Electronic Systems Magazine, vol. 20, no. 4, pp. 3-10, Sep. 2005
  13. N. Metni, J. M. Pflimlin, and T. Hamel, et al, 'Attitude and gyro bias estimation for a VTOL UAV,' Control Engineering Practice, vol. 14, no. 12, pp. 1511-1520, Dec. 2004
  14. D. H. Lyon, 'A military perspective on small unmanned aerial vehicles,' IEEE Instrumentation & Measurement Magazine, vol. 7, no. 3, pp. 27-31, Sep. 2004 https://doi.org/10.1109/MIM.2004.1304563
  15. S. K. Hong, 'Fuzzy logic based closed-loop strapdown attitude system for Unmanned Aerial Vehicle(UAV),' Sensors and Actuators A-Physical, vol. 107, no. 2, pp. 109-118, Oct. 2003 https://doi.org/10.1016/S0924-4247(03)00353-4
  16. G. Pang and Hl Liu, 'Evaluation of a low-cost MEMS accelerometer for distance measurement,' Journal of Intelligent and Robotic Systems, vol. 30, pp. 249-256, 2001 https://doi.org/10.1023/A:1008113324758
  17. W. Hao, and W. F. Tian, 'Modeling the random drift of micromachined gyroscope with neural network,' Neural Processing Letters, vol. 22, no. 3, pp. 235-247, Dec. 2005 https://doi.org/10.1007/s11063-005-6800-8
  18. J. M. Hespanha, O. A. Yakimenko, I. I. Kaminer, and A. M. Pascoal, 'Linear parametrically varying systems with brief instabilities: an application to vision/inertial navigation,' IEEE Trans. on Aerospace and Electronic Systems, vol. 40, no. 3, pp. 889-902, Jul. 2004 https://doi.org/10.1109/TAES.2004.1337462
  19. P. Croke, 'An inertial and visual sensing system, for a small autonomous helicopter,' Journal of Robotic Systems, vol. 21, no. 2, pp. 43-52, Feb. 2004 https://doi.org/10.1002/rob.10127
  20. 오승진, 김우현, 이장규, 이형근, 박찬국, 'INS/영상센서 결합 항법시스템 설계,' 제어.자동화.시스템공학회 논문지, 제 12 권, 제 10 호, pp. 982-988, 2006. 10 https://doi.org/10.5302/J.ICROS.2006.12.10.982
  21. S. Hong, M. H. Lee, and H. H. Chun, et al., 'Experimental study on the estimation of lever arm in GPS/INS,' IEEE Trans. On Vehicular Technology, vol. 55, no. 2, pp. 431-448, Mar. 2006 https://doi.org/10.1109/TVT.2005.863411
  22. Y. S. Suh, S. K. Park, and H. J. Kang, et al, 'Attitude estimation adaptively compensating external acceleration,' JSME Int. journal series C-mechanical systems machine elements and manufacturing, vol. 49, no. 1, pp. 172-179, Mar. 2006 https://doi.org/10.1299/jsmec.49.172
  23. 김광진, 박찬국, 유명종, 박영범, 'INS/GPS 강결합 기법 에 대한 EKF와 UKF의 성능 비교,' 제어.자동화.시스템공학 논문지, 제 12 권, 제 8 호, pp. 780-788, 2006. 8 https://doi.org/10.5302/J.ICROS.2006.12.8.780
  24. S. P. Hong, M. H. Lee, and H. H. Chun, et al., 'Observability of error states in GPS/INS integrations,' IEEE Trans. on Vehicular Technology, vol. 54, no. 2, pp. 731-743, Mar. 2005 https://doi.org/10.1109/TVT.2004.841540
  25. S. Park, C. W. Tan, and J. Park, 'A scheme for improving the performance of a gyroscope-free inertial measurement unit,' Sensors and Actuators A-Physical, vol. 121, no. 2, pp. 410-420, Jun. 2005 https://doi.org/10.1016/j.sna.2005.03.060
  26. C. Hide and T. Moore, 'GPS and low cost INS integration for positioning in the Urban environment,' Proceedings of ION GNSS 2005, 2005. 9
  27. D. H. Hwang, S. H. Oh, and S. J. Lee, et al, 'Design of a lowcost attitude determination GPS/INS integrated navigation system,' GPS Solutions, vol. 9, no. 4, pp. 294-311, Nov. 2005 https://doi.org/10.1007/s10291-005-0135-9
  28. N. S. Kumar and T. Jann, 'Estimation of attitudes from a lowcost miniaturized inertial platform using Kalman filter-based sensor fusion algorithm,' Sadhana-Academic Proceedings in Engineering Sciences, vol. 29, pp. 217-235, Apr. 2004
  29. M. Haid and J. Breitenbach, 'Low cost inertial orientation tracking with Kalman filter,' Applied Mathematics and Computation, vol. 153, no. 2, pp. 567-575, Jun. 2004 https://doi.org/10.1016/S0096-3003(03)00656-8
  30. S. Kosanam and D. Simon, 'Kalman filtering with uncertain noise covariance,' Proc .of Intelligent Systems and Control, pp. 375-379 Aug. 2004
  31. B. Sinooli, L. Schenato, and M. Franceschetti, et al, 'Kalman filtering with intermittent observations,' IEEE Trans. On Automatic Control, vol. 49, no. 9, pp. 1453-1464, Sep. 2004 https://doi.org/10.1109/TAC.2004.834121