DOI QR코드

DOI QR Code

Online Dynamic Modeling of Ubiquitous Sensor based Embedded Robot Systems using Kalman Filter Algorithm

칼만 필터 알고리즘을 이용한 유비쿼터스 센서 기반 임베디드 로봇시스템의 온라인 동적 모델링

  • 조현철 (동아대학교 전기공학과 포닥연구원) ;
  • 이진우 (동아대학교 전기공학과 포닥연구원) ;
  • 이영진 (한국폴리텍 항공대학 항공전기과) ;
  • 이권순 (동아대학교 전기공학과)
  • Published : 2008.08.01

Abstract

This paper presents Kalman filter based system modeling algorithm for autonomous robot systems. State of the robot system is measured using embedded sensor systems and then carried to a host computer via ubiquitous sensor network (USN). We settle a linear state-space motion equation for unknown robot system dynamics and modify a popular Kalman filter algorithm in deriving suitable parameter estimation mechanism. To represent time-delay nature due to network media in system modeling, we construct an augmented state-space model which is mainly composed of original state and estimated parameter vectors. We conduct real-time experiment to test our proposed estimation algorithm where speed state of the constructed robot is used as system observation.

Keywords

References

  1. D. Hristu-Varsakelis, W. S. Levine (Ed.), Handbook of Networked and Embedded Control Systems, Birkhäuser, Boston, 2005
  2. K. Kang, J. Song, J. Kim, H. Park, and W.-D. Cho, 'USS monitor: A monitoring system for collaborative ubiquitous computing environment,' IEEE Trans. on Consumer Electronics, vol. 53, no. 3, pp. 911-916, 2007 https://doi.org/10.1109/TCE.2007.4341565
  3. M. Marciniak, 'Reliability for future ubiquitous network societies challenges and opportunities,' Int. Conf. on Transparent Optical Networks, vol. 3, pp. 130-131, 2006
  4. G. Acampora and V. Loia, 'Ubiquitous fuzzy computing in open ambient intelligence environments,' IEEE Int. Conf. on Fuzzy Systems, pp. 923-930, 2006
  5. J.-Y. Kwak, 'Ubiquitous services system based on SIP,' IEEE Trans. on Consumer Electronics, vol. 53, no. 3, pp. 938-944, 2007 https://doi.org/10.1109/TCE.2007.4341569
  6. T. C. Yang, 'Networked control systems: a brief survey,' IEEE Proc.-Control Theory & Applications, vol. 153, no. 4, pp. 403-412, 2006 https://doi.org/10.1049/ip-cta:20050178
  7. Y. Jianyong, Y. Shimin, and W. Haiqing, 'Survey on the performance analysis of networked control systems,' IEEE Int. Conf. on System, Manand Cybernetics, pp. 5068-5073, 2004
  8. Y. Tipsuwan and M.-Y. Chow, 'Control methodologies in networked control systems,' Control Engineering Practice, vol. 11, pp. 1099-1111, 2003 https://doi.org/10.1016/S0967-0661(03)00036-4
  9. L. A. Montestruque and P. J. Antsaklis, 'On the model-based control of networked systems,' Automatica, vol. 39, pp. 1837-1843, 2003 https://doi.org/10.1016/S0005-1098(03)00186-9
  10. L. Zhang, Y. Shi, T. Chen, and B. Huang, 'A new method for stabilization of networked control systems with random delays,' IEEE Trans. on Automatic Control, vol. 50, no. 8, pp. 1177-1181, 2005 https://doi.org/10.1109/TAC.2005.852550
  11. 조현철, 이권순, '지능형 알고리즘을 이용한 랜덤 시 간지연을 갖는 네트워크 기반 시스템의 비선형 제어,' 한국지능시스템학회, vol. 17, no. 5, pp. 660-667, 2007 https://doi.org/10.5391/JKIIS.2007.17.5.660
  12. R. G. Brown, P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, Wiley, 1996