Optimization of the Reaction Conditions and the Effect of Surfactants on the Kinetic Resolution of [R,S]-Naoroxen 2,2,2-Trifluoroethyl Thioester by Using Lipse

리파아제를 이용한 라세믹 나프록센 2,2,2-트리플로로에틸 씨오에스터의 Kinetic Resolution에서 반응조건 죄적화와 계면활성제 영향

  • Song, Yoon-Seok (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Jung-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Cho, Sang-Won (Department of Chemical and Biological Engineering, Korea University) ;
  • Kang, Seong-Woo (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • 송윤석 (고려대학교 화공생명공학과) ;
  • 이종호 (고려대학교 화공생명공학과) ;
  • 조상원 (고려대학교 화공생명공학과) ;
  • 강성우 (고려대학교 화공생명공학과) ;
  • 김승욱 (고려대학교 화공생명공학과)
  • Published : 2008.06.30

Abstract

In this study, the reaction conditions for lipase-catalyzed resolution of racemic naproxen 2,2,2-trilfluoroethyl thioester were optimized, and the effect of surfactants was investigated. Among the organic solvents tested, the isooctane showed the highest conversion (92.19%) in a hydrolytic reaction of (S)-naproxen 2,2,2-trifluoroethyl thioester. In addition, the isooctane induced the highest initial reaction rate of (S)-naproxen 2,2,2-trifluoroethyl thioester ($V_s=2.34{\times}10^{-2}mM/h$), the highest enantioselectivity (E = 36.12) and the highest specific activity ($V_s/(E_t)=7.80{\times}10^{-4}mmol/h{\cdot}g$) of lipase. Furthermore, reaction conditions such as temperature, concentration of the substrate and enzyme, and agitation speed were optimized using response surface methodology (RSM), and the statistical analysis indicated that the optimal conditions were $48.2^{\circ}C$, 3.51 mM, 30.11 mg/mL and 180 rpm, respectively. When the optimal reaction conditions were used, the conversion of (S)-naproxen 2,2,2-trifluoroethyl thioester was 96.5%, which is similar to the conversion (94.6%) that was predicted by the model. After optimization of reaction conditions, the initial reaction rate, lipase specific activity and conversion of (S)-naproxen 2,2,2-trifluoroethyl thioester increased by approximately 19.54%, 19.12% and 4.05%, respectively. The effect of surfactants such as Triton X-100 and NP-10 was also studied and NP-10 showed the highest conversion (89.43%), final reaction rate of (S)-naproxen 2,2,2-trifluoroethyl thioester ($V_s=1.175{\times}10^{-2}mM/h$) and enantioselectivity (E = 59.24) of lipase.

본 연구에서는 lipase를 이용한 라세믹-naproxen 2,2,2-trifluoroethyl thioester의 광학분할 반응을 향상시키기 위하여 반응 용매, 반응 온도, 기질 및 lipase 농도 그리고 교반속도의 변수들을 최적화 하였고, isooctane과 물의 계변을 증가시키기 위한 계면 활성제의 영향을 조사하였다. 조사된 유기용매 중 isooctane이 가장 높은 전환율 (92.19%), $V_s\;(2.340{\times}10^{-2}mM/h)$, E값 (36.12) 그리고 $V_s/(E_t)$ ($7.80{\times}10^{-4}mmol/h{\cdot}g$)를 나타내어 lipase 를 이용한 라세믹-naproxen2,2,2-trifluoroethyl thioester의 광학 분할 반응을 위한 가장 효과적인 유기용매로 판단하였다. 반응 표면 분석법을 이용한 반응조건 최적화에서는 반응 온도 $48.2^{\circ}C$, 기질 농도 3.51 mM, lipase 농도 30.11 mg/ml 그리고 교반속도 180 rpm을 최적 반응 조건으로 도출하였고, 이 최적화된 반응 조건으로 광학분할 반응을 수행한 결과, $V_s$, $V_s/(E_t)$ 그리고 전환 율이 각각 19.54%, 19.12%, 4.05% 증가하였다. 계면활성제로써 첨가된 NP-10은 (S)-naproxen 2,2,2-trifluoroethyl thioester의 가장 높은 전환율 (89.43%)을 나타내었고, 반응속도의 감소를 둔화시켰으며, lipase의 광학선택성 (E=59.24)을 향상시켰다.

Keywords

References

  1. Klibanov, A. M. (1990), Asymmetric transformations catalyzed by enzymes in organic solvents, Acc. Chem. Res. 23, 114-120 https://doi.org/10.1021/ar00172a004
  2. Lee, K. W., H. A. Bae, and Y. H. Lee (2007), Molecular cloning and functional expression of esf gene encoding enantioselective lipase from Serratia marcescens ES-2 for kinetic resolution of optically active (S)-flurbiprofen, J. Microbiol. Biotechnol. 17, 74-80
  3. Schoffers, E., A. Golebiowski, and C. R. Johnson (1996), Enantioselective synthesis through enzymatic asymmetrization. Tetrahedron 52, 3769-3826 https://doi.org/10.1016/S0040-4020(95)01021-1
  4. Sib, C. J. and S. H. Wu (1989), Resolution of enantiomers via biocatalysis, Topics Stereochem. 19, 63-125 https://doi.org/10.1002/9780470147283.ch2
  5. Wo, J. C., T. Y. Poh, Y. Chow, M. M. R. Talukder, and W. J. Choi (2007), Enhanced enantioselectivity of immobilized Candida Antarctica lipase for hydrolysis of ketoprofen ethyl ester at pH 1, Korean J. Chem. Eng. 24, 648-650 https://doi.org/10.1007/s11814-007-0018-6
  6. Hull, A. J. and J. Caldwell (1984), The importance of stereochemistry in the clinical phannacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs, Clin. Pharmacokinet. 9, 371-373 https://doi.org/10.2165/00003088-198409040-00007
  7. Lim, J. S., M. C. Park, J. H. Lee, S. W. Park, and S. W. Kim (2005), Optimization of culture medium and conditions for neo-fructooligosaccharides production by Penicillium citrinum, Eur. Food Res. Technol. 221, 639-644 https://doi.org/10.1007/s00217-005-0070-6
  8. Wu, J. Y. and S. W. Liu (2000), lnfluence of alcohol concentration of lipase-catalyzed enantioselective esterification of racemic naproxen in isooctane: under controlled water activity, Enzyme Microb. Technol. 26, 124-130 https://doi.org/10.1016/S0141-0229(99)00154-4
  9. Liu, H. J. and S. I. Sabesan (1980), Direct transformation of carboxylic acids into thiol esters induces by phenyl dichlorophosphate, Can. J. Chem. 58, 2645-2648 https://doi.org/10.1139/v80-423
  10. Kim, S. B., K. H. Won, S. J. Moon, K. J. Kim, and H. W. Park (2004), Solid bases as racemization catalyst for lipase-catalyzed dynamic kinetic resolution of naproxen 2,2,2-trifluoroethyl thioester, Korean J. Biotechnol. Bioeng. 19, 215-220
  11. Chen, C. C. and S. W. Tsai (2005), Carica papaya lipase: a novel biocatalyst for the enantioselective hydrolysis of (R,S)-naproxen 2,2,2-trifluoroethyl ester, Enzyme Microb. Technol. 36, 127-132 https://doi.org/10.1016/j.enzmictec.2004.07.004
  12. Chen, C. C., S. W. Tsai, and P. Villeneuve (2005), Enantioselective hydrolysis of (R,S)-naproxen 2,2,2-trifluoroethyl ester in water-saturated solvents via lipases from Carica pentagona Heilborn and Carica papaya, J. Mol. Catal. B-Enzym. 34, 51-57 https://doi.org/10.1016/j.molcatb.2005.04.011
  13. Chang, C. S., C. C. Su, J. R. Zhuang, and S. W. Tsai (2004), Enhancement of enantioselectivity on the synthesis of (S)-naproxen morpholinoalkyl ester prodrugs in organic solvents using isopropanol-dried immobilized lipase, J. Mol. Catal. B-Enzym. 30, 151-157 https://doi.org/10.1016/j.molcatb.2004.05.001
  14. Cui, Y. M., D. Z. Wei, and J. T. Yu (1997), Lipase-catalyzed esterification in organic solvent to resolve racemic naproxen, Biotechnol. Lett. 19, 865-868 https://doi.org/10.1023/A:1018333503317
  15. Kim, Y. H., S. W. Kang, J. H. Lee, H. I. Chang, C. W. Yun, H. D. Paik, C. W. Kang, and S. W. Kim (2006), Optimization of medium components for cell mass production of saccharomyces cerevisiae JUL3 using response surface methodology, Korean J. Biotechnol. Bioeng. 21, 479-483
  16. Holmberg, K., M. Nyden, L. T. Lee, M. Malmsten, and K. J. Brajesh (2000), Interactions between a lipase and charged surfactants - a comparison between bulk and interfaces, J. Colloid Interface Sci. 88, 223-241 https://doi.org/10.1016/S0001-8686(00)00046-4
  17. Debnath, S., D. Das, and P. K. Das (2007), Unsaturation at the surfactant head: lnfluence on the activity of lipase and horseradish peroxidase in reverse micelles, Biochem. Biophys. Res. Commun. 356, 163-168 https://doi.org/10.1016/j.bbrc.2007.02.132
  18. Dandavate, V. and D. Madamwar (2007), Novel approach for the synthesis of ethyl isovalerate using surfactant coated Candida rugosa lipase immobilized in microemulsion based organogels, Enzyme Microb. Technol. 41, 265-270 https://doi.org/10.1016/j.enzmictec.2007.01.019
  19. Goto, M., C. Hatanaka, and M. Goto (2005), Immobilization of surfactant-lipase complexes and their high heat resistance in organic media, Biochem. Gng. J. 24, 91-94 https://doi.org/10.1016/j.bej.2005.01.027
  20. Huang, S. Y., H. L. Chang, and M. Goto (1998), Preparation of surfactant-coated lipase for the esterification of geraniol and acetic acid in organic solvents, Enzyme Microb. Technol. 22, 552-557 https://doi.org/10.1016/S0141-0229(97)00257-3
  21. Thakar, A. and D, Madamwar (2005), Enhanced ethyl butyrate production by surfactant coated lipase immobilized on silica, Process Biochem. 40, 3263-3266 https://doi.org/10.1016/j.procbio.2005.03.036
  22. Wu, J. C., H. Ding, B. D. Song, Y. Hayashi, M. M. R. Talukder, and S. C. Wang (2003), Hydrolytic reactions catalyzed by surfactant-coated Candida rugosa lipase in an organic-aqueous two-phase system, Process Biochem. 39, 233-238 https://doi.org/10.1016/S0032-9592(03)00070-0
  23. Sonesson, A. W., H. Blom, H. Hassler, U. M. Elofsson, T. H. Callisen, H. Widengren, and H. Brismar (2008), Protein-surfactant interactions at hydrophobic interfaces studied with total internal reflection fluorescence correlation spectroscopy (TIR-FCS), J. Colloid Interface Sci. 317, 449-457 https://doi.org/10.1016/j.jcis.2007.09.089