References
- Klibanov, A. M. (1990), Asymmetric transformations catalyzed by enzymes in organic solvents, Acc. Chem. Res. 23, 114-120 https://doi.org/10.1021/ar00172a004
- Lee, K. W., H. A. Bae, and Y. H. Lee (2007), Molecular cloning and functional expression of esf gene encoding enantioselective lipase from Serratia marcescens ES-2 for kinetic resolution of optically active (S)-flurbiprofen, J. Microbiol. Biotechnol. 17, 74-80
- Schoffers, E., A. Golebiowski, and C. R. Johnson (1996), Enantioselective synthesis through enzymatic asymmetrization. Tetrahedron 52, 3769-3826 https://doi.org/10.1016/S0040-4020(95)01021-1
- Sib, C. J. and S. H. Wu (1989), Resolution of enantiomers via biocatalysis, Topics Stereochem. 19, 63-125 https://doi.org/10.1002/9780470147283.ch2
- Wo, J. C., T. Y. Poh, Y. Chow, M. M. R. Talukder, and W. J. Choi (2007), Enhanced enantioselectivity of immobilized Candida Antarctica lipase for hydrolysis of ketoprofen ethyl ester at pH 1, Korean J. Chem. Eng. 24, 648-650 https://doi.org/10.1007/s11814-007-0018-6
- Hull, A. J. and J. Caldwell (1984), The importance of stereochemistry in the clinical phannacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs, Clin. Pharmacokinet. 9, 371-373 https://doi.org/10.2165/00003088-198409040-00007
- Lim, J. S., M. C. Park, J. H. Lee, S. W. Park, and S. W. Kim (2005), Optimization of culture medium and conditions for neo-fructooligosaccharides production by Penicillium citrinum, Eur. Food Res. Technol. 221, 639-644 https://doi.org/10.1007/s00217-005-0070-6
- Wu, J. Y. and S. W. Liu (2000), lnfluence of alcohol concentration of lipase-catalyzed enantioselective esterification of racemic naproxen in isooctane: under controlled water activity, Enzyme Microb. Technol. 26, 124-130 https://doi.org/10.1016/S0141-0229(99)00154-4
- Liu, H. J. and S. I. Sabesan (1980), Direct transformation of carboxylic acids into thiol esters induces by phenyl dichlorophosphate, Can. J. Chem. 58, 2645-2648 https://doi.org/10.1139/v80-423
- Kim, S. B., K. H. Won, S. J. Moon, K. J. Kim, and H. W. Park (2004), Solid bases as racemization catalyst for lipase-catalyzed dynamic kinetic resolution of naproxen 2,2,2-trifluoroethyl thioester, Korean J. Biotechnol. Bioeng. 19, 215-220
- Chen, C. C. and S. W. Tsai (2005), Carica papaya lipase: a novel biocatalyst for the enantioselective hydrolysis of (R,S)-naproxen 2,2,2-trifluoroethyl ester, Enzyme Microb. Technol. 36, 127-132 https://doi.org/10.1016/j.enzmictec.2004.07.004
- Chen, C. C., S. W. Tsai, and P. Villeneuve (2005), Enantioselective hydrolysis of (R,S)-naproxen 2,2,2-trifluoroethyl ester in water-saturated solvents via lipases from Carica pentagona Heilborn and Carica papaya, J. Mol. Catal. B-Enzym. 34, 51-57 https://doi.org/10.1016/j.molcatb.2005.04.011
- Chang, C. S., C. C. Su, J. R. Zhuang, and S. W. Tsai (2004), Enhancement of enantioselectivity on the synthesis of (S)-naproxen morpholinoalkyl ester prodrugs in organic solvents using isopropanol-dried immobilized lipase, J. Mol. Catal. B-Enzym. 30, 151-157 https://doi.org/10.1016/j.molcatb.2004.05.001
- Cui, Y. M., D. Z. Wei, and J. T. Yu (1997), Lipase-catalyzed esterification in organic solvent to resolve racemic naproxen, Biotechnol. Lett. 19, 865-868 https://doi.org/10.1023/A:1018333503317
- Kim, Y. H., S. W. Kang, J. H. Lee, H. I. Chang, C. W. Yun, H. D. Paik, C. W. Kang, and S. W. Kim (2006), Optimization of medium components for cell mass production of saccharomyces cerevisiae JUL3 using response surface methodology, Korean J. Biotechnol. Bioeng. 21, 479-483
- Holmberg, K., M. Nyden, L. T. Lee, M. Malmsten, and K. J. Brajesh (2000), Interactions between a lipase and charged surfactants - a comparison between bulk and interfaces, J. Colloid Interface Sci. 88, 223-241 https://doi.org/10.1016/S0001-8686(00)00046-4
- Debnath, S., D. Das, and P. K. Das (2007), Unsaturation at the surfactant head: lnfluence on the activity of lipase and horseradish peroxidase in reverse micelles, Biochem. Biophys. Res. Commun. 356, 163-168 https://doi.org/10.1016/j.bbrc.2007.02.132
- Dandavate, V. and D. Madamwar (2007), Novel approach for the synthesis of ethyl isovalerate using surfactant coated Candida rugosa lipase immobilized in microemulsion based organogels, Enzyme Microb. Technol. 41, 265-270 https://doi.org/10.1016/j.enzmictec.2007.01.019
- Goto, M., C. Hatanaka, and M. Goto (2005), Immobilization of surfactant-lipase complexes and their high heat resistance in organic media, Biochem. Gng. J. 24, 91-94 https://doi.org/10.1016/j.bej.2005.01.027
- Huang, S. Y., H. L. Chang, and M. Goto (1998), Preparation of surfactant-coated lipase for the esterification of geraniol and acetic acid in organic solvents, Enzyme Microb. Technol. 22, 552-557 https://doi.org/10.1016/S0141-0229(97)00257-3
- Thakar, A. and D, Madamwar (2005), Enhanced ethyl butyrate production by surfactant coated lipase immobilized on silica, Process Biochem. 40, 3263-3266 https://doi.org/10.1016/j.procbio.2005.03.036
- Wu, J. C., H. Ding, B. D. Song, Y. Hayashi, M. M. R. Talukder, and S. C. Wang (2003), Hydrolytic reactions catalyzed by surfactant-coated Candida rugosa lipase in an organic-aqueous two-phase system, Process Biochem. 39, 233-238 https://doi.org/10.1016/S0032-9592(03)00070-0
- Sonesson, A. W., H. Blom, H. Hassler, U. M. Elofsson, T. H. Callisen, H. Widengren, and H. Brismar (2008), Protein-surfactant interactions at hydrophobic interfaces studied with total internal reflection fluorescence correlation spectroscopy (TIR-FCS), J. Colloid Interface Sci. 317, 449-457 https://doi.org/10.1016/j.jcis.2007.09.089