DOI QR코드

DOI QR Code

Modified cubic convolution scaler for edge-directed nonuniform data

Edge 방향의 비균등 데이터를 위한 개선된 Cubic Convolution Scaler

  • 김상미 (세종대학교 정보통신공학과) ;
  • 한종기 (세종대학교 정보통신공학과)
  • Published : 2008.09.30

Abstract

We derive a modified version of the cubic convolution scaler to enlarge or reduce the size of digital image with arbitrary ratio. To enhance the edge information of the scaled image and to obtain a high-quality scaled image, the proposed scaler is applied along the direction of an edge. Since interpolation along the direction of an edge has to process nonuniformly sampled data, the kernel of the cubic convolution scaler is modified to interpolate the data. The proposed scaling scheme can be used to resize pictures in various formats in a transcoding system that transforms a bit stream compressed at one bit rate into one compressed at another bit rate. In many applications, such as transcoders, the resolution conversion is very important for changing the image size while maintaining high quality of the scaled image. We show experimental results that demonstrate the effectiveness of the proposed interpolation method. The proposed scheme provides clearer edges, without artifacts, in the resized image than do conventional schemes. The algorithm exhibits significant improvement in the minimization of information loss when compared with the conventional interpolation algorithms.

본 논문에서는 디지털 영상의 해상도를 임의의 배율로 확대 또는 축소하기 위해 사용되는 개선된 cubic convolution scaler를 제안한다. 화면 해상도 변경 시 엣지 부분에서 큰 왜곡이 발생되는 문제를 극복하기 위하여 제안하는 해상도 변환 방법은 영상의 edge의 방향에 따라 적용되며, 이것은 해상도 변환된 영상의 edge 특징을 잘 보존시킬 뿐 아니라 영상의 화질도 좋게 한다. 하지만 영상 보간에 사용되는 edge 방향 데이터들이 비균등 간격으로 위치하는 특징을 가지므로 cubic convolution의 kernel을 이에 맞게 새롭게 설계하였다. 제안하는 해상도 변환 방법은 transcoder와 같이 해상도 조정을 필요로 하면서 변환된 영상의 화질을 우수하게 유지하여야 하는 여러 응용분야에서 중요하게 사용된다. 실험 결과에서는 제안하는 방법으로 변환된 영상이 기존 보간 방법을 사용하여 변환된 영상에 비해 artifact를 가지지 않으면서도 좀 더 깨끗한 edge 정보를 가지고 있다는 것을 보여준다. 또 기존 방법에 비해 제안하는 방법은 해상도 변환에 의한 정보의 손실을 최소화 하였다.

Keywords

References

  1. K. Toriaichi, K. Yang, M. Kanada. and R. Mori, "Tow-dimensional spline interpolation for image reconstruction", Pattern Recong. 21(3), pp. 275-284, 1988 https://doi.org/10.1016/0031-3203(88)90062-3
  2. W. K. Pratt, Digital Image Processing, John Wiley & Sons Inc., 1991
  3. M. Unser, B. L. Trus, and M. Eden, "Iterative restoration of noisy elastically distorted quasi-periodic images," Signal Processing, 17, pp. 191-200, July 1989 https://doi.org/10.1016/0165-1684(89)90001-7
  4. P. Thevenaz, T Blu, and M. Unser, "Image interpolation and resampling," in Handbook of Medical Imagin, Processing and Analysis, I. N. Bankman, Ed., pp.393-420, Academic Press, San Diego, 2000
  5. M. Unser, A. Aldroubi, and M. Eden, "Enlargement or reduction of digital images with minimum loss of information," IEEE Trans., Image Process. 4, pp.247-258, Mar. 1995
  6. R.G. Keys, "Cubic convolution interpolation for digital image processing," IEEE Trans. Acoust., Speech, Signal Process. 29, pp.1153-1160, Dec. 1981 https://doi.org/10.1109/TASSP.1981.1163711
  7. H. S. Hou and H. C. Andrews, "Cubic splines for image interpolation and digital filtering," IEEE Trans. Acoust., Speech, Signal Process. 26, pp.508-517, 1978 https://doi.org/10.1109/TASSP.1978.1163154
  8. M. Unserm A, Aldroubi, and M. Eden, "Fast B-spline transforms for continuous image representation and interpolation," IEEE Trans. Pattern Anal. Mach. Intell. 13, pp.277-285, Mar. 1991 https://doi.org/10.1109/34.75515
  9. B. Ayazifar and J. S. Lim, "PEL-adaptive model-based interpolation of spatially subsampled images," in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Process., Vol. 3, pp. 181-184, 1992
  10. K. Ratakonda and N. Ahuja, "POCS based adaptive image magnification," in Proc. IEEE Int. Conf. on Image Processing, Vol 3, pp 203-207, 1998
  11. W. K. Carey, D. B. Chuang, and S. S. Hemami, "Regularity-preserving image interpolation," IEEE Trans. Image Process. 8(9), pp. 1293-1297, 1999 https://doi.org/10.1109/83.784441
  12. S. E. Reichenbach and F. Geng, "Two-dimensional cubic convolution," IEEE Trans. Image Process. 12(8), pp. 857-865, 2003 https://doi.org/10.1109/TIP.2003.814248
  13. J. Allebach and P. W. Wong, "Edge-directed interpolation," in Proc. IEEE Int. Conf. on Image Process. 12(8), pp. 857-765, 2003
  14. S. Battiato, G, Gallo, and F. Stanco, "A locally-adaptive zooming algorithm for digital images," Image Vis. Comput. 20(11), pp. 805-812, 2002 https://doi.org/10.1016/S0262-8856(02)00089-6
  15. K. Jensen and D. Anastassiou, "Subpixel edge localization and the interpolation of still images," IEEE Trans. Image Process. 4(3), pp. 285-295, 1995 https://doi.org/10.1109/83.366477
  16. Q. Wang and R. Ward, "A new edge-directed image expansion scheme," in Proc. IEEE Int. Conf. on Image Processing, Vol. 3, pp. 899-902, 2001
  17. X. Li and M. T. Orchard, "New edge-directed interpolation," IEEE Trans. Image Process. 10(10), pp.1521-1527, 2001 https://doi.org/10.1109/83.951537
  18. L. Rodrigues, D. L. Borges, and L. M. Gonalves, "A locally adaptive edge-preserving algorithm for image interpolation," in Proc. IEEE Symp. on Computer Graphics and Image Processing, XV Brazilian, pp.300-305, 2002 https://doi.org/10.1109/SIBGRA.2002.1167158
  19. S. S. Rifman "Digital rectification of ERTS multispectral imagery," in Proc. Symp. on Significant Results Obtained from ERTS-1(NASA SP-327), I, Sec. B, pp.1131- 1142, 1973
  20. R. Bernstein, "Digital image processing of earth observation sensor data," IBM J. Res. Dev. 20, pp.40-57, 1976 https://doi.org/10.1147/rd.201.0040
  21. J. Youn, M. -T. Sun, and C. -W. Lin, "Motion vector refinement for high performance transcoding," IEEE Trans. Multimedia, 1, pp. 30-40, Mar. 1999 https://doi.org/10.1109/6046.748169
  22. N. Merhav,"Multiplication-free approximation algorithms for compressed-domain linear operations on images," IEEE Trans. Image Process. 8, pp. 247-254, Feb. 1999 https://doi.org/10.1109/83.743858
  23. T. Shanableh and M. Ghanbari, "Heterogeneous video transcoding to lower spatio-temporal resolutions and different encoding format," IEEE Trans. Multimedia, 2, pp. 101-110, June 2000 https://doi.org/10.1109/6046.845014
  24. B. Shen, I. K. Sethi, and B. Vasudev, "Adaptive motion vector resampling for compress video downscaling," IEEE Trans. Circuits Syst. Video Technol. 9, pp. 929-936, Sep. 1999 https://doi.org/10.1109/76.785730
  25. C. Yim and M. A. Isnardi, "An efficient method for DCT-domain image resizing with mixed field/frame-mode macroblocks," IEEE Trans. Circuits Syst. Video Technol. 9. pp. 696-700, Aug. 1999 https://doi.org/10.1109/76.780359
  26. J. Song and B. -L. Yeo, "A fast algorithm for DCT-domain inverse motion compensation based on shared information in a macroblock," IEEE Trans. Circuits Syst. Video Technol. 10, pp. 767-775, Aug. 2000 https://doi.org/10.1109/76.856453
  27. 유영조, 서주헌, 한종기, "다양한 포맷변환을 지원하는 transcoder의 개선된 cubic convolution scaler", 한국 통신학회 논문지, pp. 867-880, vol. 32, no 9C, 9월, 2007