Grazing Effects of Freshwater Bivalve Unio douglasiae of the North Han River on the Cyanobacterial Bloom Waters

북한강 수계에 분포하는 말조개의 남조류 섭식특성

  • Lee, Yeon-Ju (Department of Environmental Science, Konkuk University) ;
  • Kim, Baik-Ho (Department of Environmental Science, Konkuk University) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • 이연주 (건국대학교 생명환경과학대학 환경과학과) ;
  • 김백호 (건국대학교 생명환경과학대학 환경과학과) ;
  • 황순진 (건국대학교 생명환경과학대학 환경과학과)
  • Published : 2008.09.30

Abstract

A freshwater bivalve (Unio douglasiae) was examined to assess the filtering rate (FR) on the cyanobacterial assemblage in a hypertrophic lake. Animal U. douglasiae used in the present study was collected using a hand-operated dredge from the North Han River (Gapyeong, Korea). The FR was measured at different feeding conditions such as feeding interval (1, 4, 7, and 24 h), mussel size (4.2$\sim$8.1 cm, n=23), prey concentration (506.7, 409.8, 327.5, 199.7 and 88.6 ${\mu}g\;L^{-1}$), and mussel density (0.5, 1.0 and 1.5 indiv. $L^{-1}$). On the applied feeding interval, the maximum FR (0.21 L $g^{-1}h^{-1}$) and minimum feces production (FP, 0.12 mg $g^{-1}h^{-1}$) were observed at 1 and 24 hr, respectively. Both weight-based FR and FP were not correlated with the mussel size, and the values lied in a limited range with some degree of variation. Likewise, no significant relations between FR and FP were observed in the mussel size. The FR values were negatively correlated with food concentration, but positively with FP. For the food concentrations, the maximum FR (0.41 L $g^{-1}h^{-1}$) and FP (0.16 mg $g^{-1}h^{-1}$) were 88.6 ${\mu}gL^{-1}$ and 327.5 ${\mu}gL^{-1}$, respectively. These results indicate that U. douglasiae collected from the North Han River, although the filtering rate were slightly less than Keum River mussel, may be applied as a strategic bio-filter to mitigate cyanobacterial bloom in eutrophic lake.

유해남조의 생물학적 제어를 위한 연구의 일환으로 북한강수계(가평)에 서식하는 이매패 말조개(Unio douglasiae)의 섭식특성을 조사하였다. 섭식실험은 크게 시간별, 개체크기, 동물밀도, 먹이밀도 (엽록소-a 농도) 등에 따라 패류의 여과율 및 배설물 생산량을 각각 측정하였다. 말조개의 여과율은 섭식 후 적용 7시간째 (0.21 L $g^{-1}h^{-1}$, 0.54 mg $g^{-1}h^{-1}$), 크기 5 cm보다 작은 개체에서 최고 여과율 및 배설물 생산량 (5.89 L $g^{-1}h^{-1}$, 16.38 mg $g^{-1}h^{-1}$)을 각각 나타냈다. 또한 가장 낮은 먹이밀도 (엽록소-a 88.5 ${\mu}gL^{-1}$)에서 0.41 L $g^{-1}h^{-1}$로 최고 여과율을 보였으며, 일정 먹이농도 이상에서는 배설물 생산량이 증가하지 않는 것으로 나타났다. 또한 패류의 조류 제어효과는 개체 밀도가 증가할수록 뚜렷한 효과를 나타냈다. 결국 이상의 결과들은 북한강에 서식하는 이매패 말조개가 부영양호수의 남조류 제어의 유용생물로서 적용 가능성을 입증하였다.

Keywords

References

  1. 권오길, 이상준, 박갑만. 1986. 의암호의 패류에 관한 연구. 한국육수학회지 19: 51-56
  2. 김건희, 김백호, 박명환, 황순진. 2008. 담수패류 (Unio douglasiae)와 침수식물 (Potamogeton crispus)의 유해 남조 Oscillatoria sp. 성장억제 효과. 한국하천호수학회지 41(S): 68-76
  3. 김호섭, 박정환, 공동수, 황순진. 2004. 참재첩을 이용한 부영양호의 수질개선. 한국육수학회지 37(3): 332-343
  4. 박구성, 김백호, 엄한용, 황순진. 2008. 남조류 대발생 환경에서 수심과 용존산소 변화에 따른 담수산 이매패(말조개)의 생존율, 여과율 및 배설물 생산. 한국하천호수학회지 41(S): 50-60
  5. 박정환. 2004. 담수산 이매패류가 수생태계의 생태학적 수준의 변화에 미치는 영향에 관한 연구: Mesocosm 연구. 건국대 석사논문
  6. 이송희, 황순진, 김백호. 2008. 부영양 하천 및 호소의 저온기 규조군집에 대한 말조개의 섭식특성. 한국하천호수학회지 41(2): 237-246
  7. 이연주, 김백호, 김난영, 엄한용, 황순진. 2008. 수온, 먹이농도, 패각 크기가 Microcystis aeruginosa에 대한 말조개의 여과율 및 배설물 생산에 미치는 영향. 한국하천호수학회지 41(S): 61-67
  8. 한강수계관리위원회. 2004. 수중생태계 물질순환 및 에너지 흐름 조사
  9. 황순진, 김호섭, 최광현, 박정환. 2002. 국내 담수산 조개의 여과 섭식능 비교와 섭식활동이 수질에 미치는 영향. 한국육수학회지 35: 92-102
  10. 황순진, 전미진, 김난영, 김백호. 2008. 한국산 논우렁이의 유해 조류 섭식율 및 배설물 생산. 한국하천호수학회지 41(S): 77-85
  11. APHA. 1995. Standards methods for the examination of water and wastewater. $19^{th}$ ed. American Public Health Association, Washington, D.C.
  12. Bontes, B.M., A.M. Verschoor, L.M.D. Pires, E. Van Donk and Bas W. Ibelings. 2007. Functional response of Anodonta anatine feeding on a green alga and four strains of cyanobacteria, differing in shape, size and toxicity. Hydrobiologia 584: 191-204 https://doi.org/10.1007/s10750-007-0580-2
  13. Caraco, N.F., J.J. Cole, P.A. Raymond, D.L. Strayer, M.L. Pace, S.E.G. Findlay and D.T. Fischer. 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78: 588-602 https://doi.org/10.1890/0012-9658(1997)078[0588:ZMIIAL]2.0.CO;2
  14. Cohen, R.R.H., P.V. Dresler, E.J.P. Phillips and R.L. Cory. 1984. The effect of the Asiatic calm, Corbicula fluminea, on phytoplankton of the Potomac River, Maryland. Limnol. and Oceanogr. 29: 170-180 https://doi.org/10.4319/lo.1984.29.1.0170
  15. Dame, R.F. 1996. Ecology of marine bivalves: An ecosystem approach. CRC Press, Boca Raton, 254p
  16. Dionisio Pires, L.M., B.M. Bontes, E. Van Donk and B.W. Ibelings. 2005. Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha. J. Plankton Res. 27: 331-339 https://doi.org/10.1093/plankt/fbi008
  17. Englund, V.P.M. and M.P. Heino. 1996. Valve movement of the freshwater mussel Anodonata anatine: a reciprocal transplant experiment between lake and river. Hydrobiologia 328: 49-56 https://doi.org/10.1007/BF00016899
  18. Fanslow, D.L., T.F. Nalepa and G.A. Lang. 1995. Filtration rates of the zebra mussel (Dreissena polymorpha) on natural seston from Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 489-500 https://doi.org/10.1016/S0380-1330(95)71061-9
  19. Heath, R.T., G.L. Fahnenstiel, W.S. Gardner, J.F. Cavaletto and S.J . Hwang. 1995. Ecosystem-level effects of zebra mussel (Dreissena polymorpha): An enclosure experiment in Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 501-516 https://doi.org/10.1016/S0380-1330(95)71062-0
  20. Hwang, S.J. 1996. Effects of zebra mussel (Dreissena polymorpha): on phytoplankton and bacterioplankton: Evidence for size-selective grazing. Korean Journal of Limnology 29: 363-378
  21. Hwang, S.J., H.S. Kim and J.K. Shin. 2001. Filter-feeding effect of a freshwater bivalve (Corbicula leana PRIME) on phytoplankton. Korean Journal of Limnology 34(4): 298-309
  22. Leach, J.H. 1993. Impacts of the zebra mussel (Dreissena polymorpha) on water quality and fish spawning reefs in western Lake Erie. p. 381-397. In: Zebra Mussels: Biology, Impact, and Control (Nalepa, T.F. and D.W. Schloesser, eds.). Lewis Publishers, Boca Raton, FL
  23. Macisaac, H.J. 1996. Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. Am. Zool. 36: 287-299 https://doi.org/10.1093/icb/36.3.287
  24. Nalepa, T.F. 1995. Zebra mussels in the Saginaw Bay. Lake Huron ecosystem. J. Great Lakes Res. 21: 411-573 https://doi.org/10.1016/S0380-1330(95)71055-3
  25. Nalepa, T.F. and D.W. Schloesser. 1993. Zebra Mussels: Biology, Impacts, and Control, Lewis Publishers, Boca Raton, Florida. 832p
  26. Nicholls, K.H. and G.J. Hopkins. 1993. Recent changes in Lake Erie (north shore) phytoplankton: cumulative impacts of phosphorus loading reductions and the zebra mussel introduction. J. Great Lakes Res. 19: 637-647 https://doi.org/10.1016/S0380-1330(93)71251-4
  27. Reeders, H.H., A.B. Bij de Vaate and F.J. Slim. 1989. The filtration rate of Dreissena polymorpha (Bivalvia) in three Dutch lakes with reference to biological water quality management. Freshwater Biol. 22: 133-141 https://doi.org/10.1111/j.1365-2427.1989.tb01088.x
  28. Reeders, H.H. and A.B. Bij de Vaate. 1990. Zebra mussel (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200/201: 437-450 https://doi.org/10.1007/BF02530361
  29. Soto, D. and G. Mena. 1999. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 171: 65-81 https://doi.org/10.1016/S0044-8486(98)00420-7
  30. Sprung, M. and U. Rose. 1988. Influence of food size and food quality of the feeding of the mussel Dreissena polymorpha. Oecologia 77: 526-532 https://doi.org/10.1007/BF00377269