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GENERAL FORMULAS OF SOME VACATION MODELS

JONG SEUL LIM

ABSTRACT. This paper describes a single-server queue where the server is
unavailable during some intervals of time, which is referred to as vacations.
The major contribution of this work is to derive general formulas for the
additional delay in the vacation models of the single vacations, head of line
priority queues with non-preemptive service, and multiple vacations and
idle time.
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1. Introduction

This paper describes a single-server queue where the server is unavailable
during some intervals of time, which is referred to as vacations. The major
contribution of this work is to derive general formulas for the additional delay
in the basic model. The policy can be dependent on the past behavior of the
system. The system admits the server to stay idle or to wait for a while before
a vacation is taken after serving all customers. We focus on an queue with the
complex vacation policies. The single vacations, head of line priority queues with
non-preemptive service, and multiple vacations and idle time are considered. For
these vacation policies, a general formula for the additional delay is derived. The
formula can also be extended to cases with multiple types of vacations.

2. Vacation model with single vacations

Under this policy, the server takes a vacation after serving all customers. Upon
return from a vacation, the server starts to serve the backlogged customers if
any; otherwise,it simply remains idle and waits for the next arrival. To find P
by analyzing Z,(f), let a cycle be the time interval in f between two jumps of
Z,(f). Each cycle consists of a vacation and a possible idle time. If no sampling
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point arrives during a vacation, the server has just finished and is returned from
a vacation when Z,(#) decreases to zero. According to the policy, the server
starts to stay idle in the system. This results in an idle time, which ends when
the next sampling point which is a busy period arrives. Immediately after the
sampling point, that is, the end of the busy period, another jump occurs and a
new vacation starts in Z,(£). Let v(£) be the probability density function (pdf)
for a vacation length. The probability that no sampling point arriving in a

0 g ~, ~
vacation is V*(A) = [ e~*u({)di. As discussed earlier, the sampling points have
0

an exponential interarrival time with mean 1/X. Hence, given that an idle time
occurs, its average length is 1/

In contrast, if at least one sample point has arrived in a vacation, a jump
occurs when Z,(f) becomes zero again. This is so because the server needs to
take a vacation after all customers have been served. In this case, the cycle ends
at the end of the vacation.

The PASTA(Poisson Arrivals See Time Averages) property implies that a
Poisson probing stream provides an unbiased estimate of the desired time av-
erage, which states that, under very general conditions, the fraction of Poisson
arrivals that observe an underlying process in a particular state is equal, asymp-
totically, to the fraction of time the process spends in that state. Combining
both cases and using the PASTA property, the probability that an arbitrary
sampling point finds Z, () = 0 is

_ Avg Length of an Idle Time in a Cycle _ V*()\)/\

B Aug. Cycle Length T+ VE(N/A

(1)

After substituting (9) into (6) and some algebraic manipulation, we obtain the
Laplace transform for the customer response time

(1-p) {Au —V*(s)] +sv*<A>} » -

Az vE ey sy o)

which is identical to (22) in Levy and Yechiali (1975).

3. Head of line priority queues with non-preemptive service

Consider a head of line priority system with types of queues H, P and L
customers where types H and L customers have the highest and lowest priority
respectively, and type P customer has a priority which is not the highest and
the lowest. Let Ay, Ty, X7(s) and py(= AZTx), denote the arrival rate, average
service time, the Laplace transform for service time and server utilization for
type-H customers, respectively. The same notation applies to other customer

types.
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Let us find the Laplace transform for the waiting time for type-P customers.
Since those type-H customers arriving during a customer service time are served
prior to any type-P customers, the Laplace transforms for the effective service
time of various types become

Gh(s) = Xi(s+ Aw — AnGH(s)),
Gp(s) = Xp(s+ Au — AuGH(s)),
G} (s) = X1 (s + A — AuGy(s)). (3)

To find the waiting time for an arbitrary type-P customer, we first characterize
the amount of work, Upy, of types P and H customers in the system at the
arrival instant. Now, let us combine queues H and P together to from a single
queue PH with Apy = Ay + Ap and the L.T. for service time, X5, (s) =
Ar X5 (s) + ApXE(5)]/APH.

As far as queue PH is concerned, service provided for a type-L customer
can be treated as a "vacation.” Note that the server takes a vacation to serve a
type-L customer after queue PH becomes empty only if type-L customer(s) exist
in the system. Clearly, at the time queue PH becomes empty, whether type-L
customers exist or not at that point in time depends on the system behavior
since the last time the system was empty. Let Up(s) be the Laplace transform
for the amount of work in queue PH found by an arbitrary arrival at the queue.
We have

(1 - ApuZpH)s
8§ — /\pH - APHX;H(S)

1- X;(s)
STy,

Upu(s) = P+ (1-F) 4)

where Tpy = (AgTy + ApTp)/Apy and Fy is the probability that a PH busy
period starts when the server is idle.

To find Py, we construct Z,(t) by contracting all PH busy periods into sam-
pling. Let mo be the fraction of virtual time ¢ that Z,(f) = 0. Since the service
provided for all types H and P customers has already been removed from Zv(f) by
the contraction operation, it is clear that mo = (1—px —pp—pL)/ (1 —pa —pP).
By the PASTA property, we have

1-pu—pp—pL (5)
1—-pu—pp

P()=7T()‘=

Substitution of (4) into (5), after algebraic manipulation, yields

. _ (L=pn —pp—pr)s+AL[l = X](s)]
Upn(s) = 8—/\H-)\p+/\HX;{(S)+/\PXI}:>(S) (6)
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Since queue PH actually has two independent streams of Poisson arrivals, Up ()
also characterizes Upy found by an arbitrary arriving type-P customer. As the
subsequent arrivals of type-H customers are served prior to type-P customers,
the waiting time for type-P customers can be obtained by the delay-cycle analy-
sis with the initial delay given by Uf . Hence, using (3) and (6), the Laplace
transform for waiting time for type-P customers is

Wp(s) = Upy(s+ An — AnGy(s))
_(-pr-pr-p1) [s + Am— AHG;,(S)] + AL [1 — X3(s+ A — )\HG*H(S))]
- 5= Xp + ApX3 (s + A — AnGils)) @)
This is identical to (3.32) of Kleinrock (1976).

4. Multiple vacations and idle time

In this model, the server chooses to take a multiple vacation or remain idle in
the system after all customers have been served. Once a decision is made to stay
idle, the server cannot initiate a vacation until new customer(s) arrive and are
exhaustively served. Assume that the vacation lengths are i.i.d. and the vacation
decision and the subsequent vacation length{s) are mutually independent.

The process Z,(£) can be constructed for this policy as discussed above. Let
Oar and 1 — B be the long-time fraction of decision epochs at which the server
initiates a multiple vacation and remains idle, respectively. A cycle is defined as
the virtual time interval between two decision epochs. Using the above approach,
by conditioning on whether the server chooses to take vacations or to stay idle,
one can obtain the average cycle length as

oo
e=pu Y VT + (1 - )

k=0

1
- 8
. ®
Note that the last term of (5) is the average length of an idle time in a cycle.
Let my be the fraction of virtual time { at which the server is idle. Clearly, mg is
equal to the ratio of that term to €. Using the PASTA property again, we have
Py = mp which is given by

g =8N _ (1= fu)[ = V") o
c X0y + (1= Bm)[L = V*(A)]
Some algebraic manipulations using (9) yields

(1-p) (1= Bm)[1 = V*(N)]s + ABm[1 - V'(S)]}
(10)

Ug(s) = S— A+ AX*(s) { MBy + (1 - Bum)fl = V*(N)]

5. Conclusions
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We have analyzed a queue with complex vacation. General formulas for the
vacation policies in the vacation models of the single vacations, head of line pri-
ority queues with non-preemptive service, and multiple vacations and idle time
have been obtained. The analysis approach in this paper can be applicable to
other related queueing models, if they conform with the basic model considered
in this paper. Further, these results can serve as a basis for the formulation and
solution of certain optimization problems involved in the similar models.
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