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PRACTICAL STABILITY IN SWARMS SYSTEM

FUCHEN PAN*, XUEBO CHEN AND LIN LI

ABSTRACT. Practical stability is a significant practical importance in sci-
entific and engineering problems but less investigated. In this paper, we
studied practical stability in swarms system and present new results.
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1. Introduction

Swarming has been studied extensively in biology[1], and there is significant -
relevant literature in physics where collective behavior of “self-propelled par-
ticles” is studied. Swarms have also been studied in the context of engineer
applications. For example, the work in on “social potential functions[2]”, “intelli-
gent vehicle highway systems[3]”, “coordination of groups of mobile autonomous
agents(7]”.

The notion of practical stability in dynamic stability was discussed by Lasalle
and Lefchetz in the 1960s and then was treated by Liao. Practical stability
of dynamic systems was studied by Yang and He[5][9]. Generalized practical
stability results by perturbing Lyapunov functions were given by Stutson and
Vatsala[10].

In this paper, we studied practical stability in swarms system, which is no
viewed before, It's significant in the swarms to deal with practical stability.

For readers’ convenience, we first introduce the practical stability of equilib-
rium points of swarms systems.

We consider a swarm of M individuals in a n-dimensional Euclidean space.
We model the individuals as points and ignore their dimensions. The position
of individual 7 is described by x;€R"™ . We assume synchronous motion and no
time delays.

We consider the equation of motion of each individual ¢ described by (8):
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M
=Y g@@-o),i=12 M 1)
j=l,j#

g(z' ~27) = —(z* — 29) (a — bexp (M)) (2)

where g(-) represents the function of mutual attraction and repulsion between
the individuals, a, b, ¢ is positive constant, a < b and ||| is the Euclidean norm.
Let the system (1) be under influence of a permanently acting perturbation
p(z*) with ||p(z?)||<6 . So that the swarms system is
M . .
it = Z g(wz_w])_l_p(xz)’ 1=1,2,--- M (3)
j=1g#i

To study practical stability of equilibrium points of swarms system, we define

1 .
the center of the swarm as 7 = ny’ . Then, the motion of the center in
i=1
model (1) is given by
| MoM . _
p= )0 Y ol -a)=0 @)
i=1j=1,j#1
Which follows from the fact that g(z* —7) is odd function of the form of (2)
and g(z* — 27) = —g(z? — z*) for all pairs (7, 7). The equation (4) implies that
the center of swarm (1) is stastic. However, this does not imply anything about
the motion of the individuals.
From {4) we know that Z is equilibrium points of swarms system (1}.

Definition 1. Swarms system is called pmct@'call_y stable, for given estimation
(A A) and some tp€A if ||2*(0) — Z|| < A, then ||z*(t) — Z|| < A is achieved for
all ¢ Z t(}‘

Definition 2. We call Qo = {«*|||27(0) — &|| < A} the initial state set and
Q = {«*||lz*(t) — Z|| < A} the permissible state set.

In order to study practical stability in swarms system we should first know:
(i) the scope of the permissible state set;

(ii) the amplitude of p(z®) (i.e., what the number § is);

(iil) how large the initial state set is.

2. Practical stability of swarms system

2.1. Practical stability without perturbation

Stability analysis had been studied in Lyapunov sense(8] to Eq.(1). There is
no work on practical stability of equilibrium points. In addition, the practical
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stability should be an intrinsic property of swarms system. Therefore it is rea-

sonable to establish the stability criteria in terms of the original unperturbed
system.

Theorem 1. Swarms (1) is practically stable with respect tg, Q and Qo , where

_ b Je 1
— L[|t — 3 AN _Z
Q= (@i ~al <Al 4= [reap(-1),

to = max ~—1ln—'f--
07T 20 2v5(0)

i”2

Qo is unrestrained.

1 S
Proof. Defining a Lyapunov function as V; = 5“8 ,e' = z' — I, we have

Vi= (2" - 2)(&* - 2)7

—(z* - 7) gj: zt - 17) <a-—bexp(“$—i%§.—lﬁ>>

~ . ot — 7|2 -
=—(2'-Z) |a Z (zt ~zH)T —b Z exp(— _———)(x —zh)T

J=1,5#1 J=1,3#1

M : d
<-aMlt ~ 2P+~ 2| Y |iot — 27 leap (_M)

=~ c
J=1,3#i

o o i)
Let Z(z'—a2?) = ||&* — 27 ||exp (—M ) Since Zmax = \/gewp (——;—),

we obtain
Vi< — aM||z* — || + b(M — 1)\/§exp (——%) |zt —

which implies that as long as [|z* — Z|| > A, and we have V; < 0. So we obtain
|zt — Z|| <A with time passing.
In order to achieve to, we consider function by

Blla* — 1) = ~( = D(alle’ =317 + by Seep (=3 ) I - ).

_ It’s clear that if [|z* — Z|| > A, then A(]|z* — Z||) < 0 holds, and we get
V;< —a||z* ~ Z||* = —2aV;, which implies that V;(t)<V;(0)exp(—2at) .
Solving inequality above, we known

A2
<,.___
t ln2V(O)

2
Let tg = max {—“2}6—11!15%} . Then the proof is thus completed. [
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Theorem 1 tell us as long as t>#, we achieve ||z* — Z||<A , from which we
know E.q.(1) is practically stable.

2.2. Practical stability with perturbation

It is natural to consider perturbation in swarms. Because of effects of all kinds
of unpredictable factors, perturbation is seen in swarms. Below we consider
practical stability to E.q.(3).

Theorem 2. Swarms (8) is practically stable with respect to, @ and Qo , where
26

Q = {a'|lls ~ z<A), A= g\/}xp(_g) + 2
to = ! | ——-——Az
0= max {‘55 “214»(0)}
Qo is unrestrained.
Proof. Using V; = 1||z* — Z||2, we have
o= (@ -8 -8
< —aMlat - alP + o - 1), Seap(~D)la* -3
oo
+lp() ~ M;p(x’)lmw’ ~ 3|

b(M — I)Jgexp(—%)
aM

< —aM|s*~3l|(le* - 2] -
2(M —1)é
T aM? )

which implies that as long as ||z* — Z|| > A, and we have V; < 0.Using the same
method as theoreml, we achieve

to = max 11 4
0= MY 722 "2vi(0)
0

We proved swarms practical stability with perturbation in theorem 2. There
are no restricts for the initial state set in both theorems, but permission state

set Q@ = {z'||]z* — 7| < A},with A = g\/gexp (~%) in theoreml and A =

b Eewp ! + 2 in theorem 2, which explains the motions of the individ-
ay 2 2 aM

uals.

Theorem 3. If T is practically stable with respect to @, Qp and 6, then
i<B|fle (5)
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where
M
B = max{lle*(t) - 2ll}, f(a')= - Y. 9@t —-a),
’ =1,57
Hf(:v’)H
i fllo ,EQHx, =Tk

Proof. We use the method as in [5]. If this is not the case, then § > B|f||q and
we can take a constant perturbation p with ||p|| = § . Now there are two cases
to consider here. (a)there exists an equilibrium point z% to E.q. (3). Since Z to
E.q. (1) is stable in Lyapunov sense[8}, the equilibrium point z¢ to E.q. (3). is
stable in Lyapunov sense. Nonetheless, from f(z:) +p =0, it follows that

||f||Q”$i(0 = Zl|12)|f @ )l = llpll =

Therefore, ||z*(0) — Z||>—— > B which implies that z:¢Q . Leading to a

IIfH
contradiction by definition. (b) there exists no point satisfying f(z*) + p = 0
. In this case, one constructs a function V; = pz* and its derivative along the
trajectories to E.q. (3). is

Vi = pf(a") + |Ip|*#0
If there exist a point zf such that
pf(xo) + Ipl® = pf(zp) + 62 =0,
then 6 = —pf(mé)sllpllIIf(wé)HSJHfIIQHwB — 5]l Tt follows that

on z||> 7 2B.

IIf lo
Therefore one sees that V; > 0 or V; < 0 for trajectories in Q. It follows that
no solution to E.q. (3) is practically stable, contrary to the hypothesis. The
proof is thus completed. a
3. Practical stability with different perturbation

In this section, we discuss several different perturbations in swarms. Supposed
that theorem 3 is satisfied for all perturbations.

3.1. constant perturbation (i.e., p(x!) = p is constant vector)
E.q. (3) is described by
M . .
> gl@—2) +p. (6)

i=1,j
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From the V; equation we obtain

Vi = @-a)#@-8T=@-2)| Y g -o)+p-p
i=1,j#
. M .
= (@-3)| ) g -2)
=li#i

IN

P c 1., -
—aM ||z —a:||2+b(M-1)\/;exp(—§)||z - Z||.

We can achieve the same results as theorem 1, namely: as long as
t > max {——l—lnA—z}
i 2a "2V;(0) [’
one get

; c 1
|z* — Z||<A, A= g\/;exp(—i).

This result is natural, because each individual has the same constant per-
turbation. Only difference from system (1) is the center of swarm, which drifts
here. We can see this fact below: From(6) and definition of swarms center, we
know

1 M ) 1 M M . . 1 M
i‘:M—z#:MZ.Z ‘g(:l:’—.’IJ])'*"M-ZP:P (M
i=1 i=1j=1,j#1 =1

E.q.(7) implies that the center of swarms with the constant perturbation drifts
with the constant velocity vector p.

3.2. Practical stability with line perturbation
E.q. (3) is described by

n

it = Z g(z* — 27) + ar(z* + by) (8)
J=1j#i
where a;€R, b€R, |la;]|<aM. Defining the same Lyapunov function as V; =

Enxi — Z||2, we have

Vi = (8 -z)@ -2)7
M
= (¢ - :T:)( Z g(z* = %) + ay(z* + by) — ay(T + bl))
J=13#1
M

= (2 —:i:)( Z g(z* — 27) + ay(z* —E))T
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M T
= @-3)( Y o' -a9) +al@E - D)

=15

i = c Lii = i =
~aM|je —xn2+b<M—1)\/;ewp<—5>||w ~ |+ lladll=* - 3]

IA

= Ol ~ aM)la* = 27 + oM - 1) [eap(-D)e’ - 3.

-

It implies that as long as ||z* —Z|| > —,we achieve V; < 0 where d = ||a;|| —aM,

2
In order to get tp, we consider inequality

Vi(t)<2aVi(t) + by/2Vi (). 9)

From inequality (9), we can get

1 —2v2h+ V2b

tS—;ln =-
2 o\ /Vi0)a+ V2b
We get practical stability to system (8) with respect to Q, Qo and to ,where

e o <=3, b= ] Lip 2B VD
Q—{ i | < a},to {Qal _9 1/1(0)@4—\/_}

b=b(M - 1)\ﬁe:vp(——§

(o is unrestrained.
3.3. Practical stability with exponent perturbation

We consider exponent perturbation described by:

S (o =* — 2|
= Z g(z* — ') + acexp | ———— (10)
i=1.j#i be
where b, > 0._
From the V; equation we obtain
Vi = (@ -2 -8)7
~ S |&* — =]
= (2t~ i){ Z g(z* —27) + aee:z:p( - —b—-——)
j 1j#i ¢

——anexp ( _ mH2> }T
—aM||z* — Z||* + b(M ~ 1)\/;@:;0(—— Yzt — || + UM = Vllacl) 'J—wl)iiae!l

IA
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which implies that as long as

b+ Vb2 + 4ab

Il — 2 >

24 ’
we have V; < 0 where
) c Lo 2(M=1)a
= =b(M - Zexp(—= e il .1
& =aM, b=b 1)\/;exp( 2), é i
b ¢ b+ Vb2 + 4ab
Denote A = g + \/g and note that 4 > t 2&+ 4ab. This implies that as

z* — Z|| > A, Vi <0 is satisfied.
In order to get ty, note that for ||z* — Z|| > A , we have
: 2abV/aé
Vi< — __“ﬂvl (11)
(b+ Vaey?
From inequality (11), we achieve
(b+ vacy, A2
2ab\/——

We get practical stability to system (10) w1th respect to @, Qo and ty, where
(b + Vaé)? A
2abvac  2Vi(0)

t< = ¢

Q = {7z — =l < 4}, to :m?x{_

Qo is unrestrained.
4. Examples

In this section, we will provide some simulation examples to illustrate the
theory developed in preceding sections. We chose an n=3 dimensional space for
ease of visualization of results and used the region [0,10]x[0,10]x[0,10] in the
space. In all the simulations performed below we used M = 10 individuals. As
parameters of the attraction/repulsion function g(:) in (2) we used a = 0.1,b =
0.4, ¢ = 50 for most of the simulations. We performed simulations in this section.

Results of practical stability were obtained for all kinds of perturbations as
shown in Table 1,where we chose parameters as p=[0.1 0.1 0.1}, |la;|| = 0.001,b; =
[0.5 0.2 0.1],||ae]| = 0.5,be = 20. One easily can see that the case, as expected,
the swarm will move the region given wherever the initial position of individuals
is. This fact is fit to definition of practical stability. Moreover, ||z¢(to) — Z|| is
much more smaller than A, which implied that A is conservative, because in the
aforementioned proof, we enlarged V. Therefore, A is, in general, much smaller
than that above.

5. Conclusion

In this article, we developed a model of the swarms and analyzed its practical
stability properties for different perturbations. The study to practical stability
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Table 1. The simulation results to practical stability with 10 individuals in 3

dimensional space

No P.B. const P.B. Line P.B. Exp P.B.

10 individuals l=*(0) - || | A=0.2426 | A=0.2426 | A=0.2186 | A=1,3295

initial position to = 32.170 | tp = 32.170 | to = 52.361 | to = 68.013

I5°(0) = 21l | 150) — 3l | I15(0) — &l | 2°(0) — i
[0.7962 8.1372 9.4524] 6.2732 0.0579 0.2632 0.1987 0.9585
[7.2092 4.6623 6.1327] 2.8026 0.0414 0.2178 0.2010 0.2345
[7.6491 7.2229 7.8293] 3.8930 0.0579 0.2178 0.1703 1.1315
[6.5794 9.9487 0.0351} 6.7000 0.0392 0.0825 0.0459 0.2345
[8.1041 3.6250 7.9696} 4.8267 0.1092 0.2178 0.0587 0.2345
{3.7424 7.3080 6.4182} 2.0792 0.0579 0.0825 0.2010 0.9890
[3.0623 6.4967 1.7848] 3.9782 0.0414 0.0825 0.1703 0.5952
[3.7070 6.8134 5.2940] 1.4484 0.0414 0.0825 0.1703 1.1315
[7.0675 0.0761 2.1874] 7.0687 0.0414 0.2178 0.0458 0.2345
[1.6837 6.5415 5.4805] 3.3131 0.0414 0.1325 0.0459 0.5952

in the swarms is a significant practical importance topic. The model here is a
simple and possible future extensions of the work here could be done by more
really model.

10.
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