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of a positive periodic solution for a general:zed predator-prey model with
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1. Introduction

In recent years, the existence of positive per.odic solutions of the prey-predator
model has been widely studied1:2:3]. The qualitive analysis of predator-prey sys-
tems is an interesting mathematical problem and has attracted a great of atten-
tion from many mathematicians and biologists!®%. Recently, Xu and Chen [l
investigated persistence and stability for a twc species ratio-dependent predator-
prey model in a two-patch environment . Since realistic model require the inclu-
sion of effect of Changing environment, recent.y, Shihua Chen and Feng Wang!",
considered the following model
. a13(t)zs3(t)

210) =210 ((0) - (i (1) - 2220

Ty (t) = z2(t)(a2(t) — an2(t)w2(t)) + Da(t)(21(¢) — z2(t)) '
| 2400 = 230 (~aa) - alto) + BT )
where D;(t)(i = 1,2),a:(t)(i = 1,2,3),a11(t), a13(t), aa(t),as1(t) and m(t) are
strickly positive continuous w—periodic functions.
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In the paper, we will study the following model

40 =010 (n(t21) - 22050 1 by (ealt) - i)
40 = a0+ DeOer) )

/ — az\t)n\t — 7

24(0) = 230) (~aalt) ~ altoa) + e 0EE=D )

(1.2)
where D;(t)(i = 1,2), a13(t), as1(t), m(t) are the same as model (1.1). g;(¢,z), (¢ =
1,2) is differentiable on = and periodic on ¢.

In this paper ,we establish a sufficient condition for the existence and attrac-
tivity of at least a positive w—periodic solution of model (1.2),So far the result
is new.

2. Existence of a positive periodic solution

To obtain the existence of positive periodic solutions of system (1.2), we
summarize some concepts and results from(5] that will be basic for this section.

Let X, Z be Banach spaces, let L : DomL C X — X be a linear mapping,
and let N : X — Z be a continuous mapping. The mapping L will be called a
Fredholm mapping of index zero if dimKerL = codimImL < 400 and ImL is
closed in Z. If L is a Fredholm mapping of index zero, there exist continuous
projectors P : X — X and @ : Z — Z such that ImP = KerL and ImL =
Ker@ = Im(I — Q). It follows that L|pomLnkerp; (I — P)X — ImL is invertibe,
we denote the inverse of that map by Kp. If  is an open-bounded subset of
X, the mapping N will be called L—compact on & if QN(f) is bounded and
Kp(I — Q)N : Q — X compact. Since Im@ is isomorphic to KerL, there exist
an isomorphism J : Im@ — KerL.

In the proof of our existence theorem, we will use the continuation theorem
of Gaines and Mawhin®l,

Lemma 2.1.81 Let L be a Fredholm mapping of index zero and let N be
L—compact on Q. Suppose:
(i) for each A € (0,1), every solution x of Lz = ANz is such that z€0L;
(ii) @Nz # 0 for each x € 00N KerL;
(i) deg{JQN,QNkerL,0} # 0.
Then Lz = Nz has at least one solution in DomL N .

For convenience, we introduce the notations:
T=1 ["sa, 1= min 1O 1= max 110,
w Jo ’ te[0,w]  telow)]

where f is a continuous w—periodic function.
Our main result on the global existence of a positive periodic solution of
system (1.2) is stated in the following theorem.

Theorem 2.1. Assume that:
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(H,) there exists a constant A such that for Vz € R,t € R, when z > A,
91t €%) < 0;

(Hz) there exists a constant B such that for Vx € R, when x > B,
g2(t,€%) < 0;

(H3) there exists a constant C(C < A) such that for Vz € R,t € R, when

z<C,
a13\M
T > —_— .
a(t,e”) 2 ( m )
(Hy) there exists a constant D(D < B) such that for Vz € R,t € R when
z <D,
92(t,€%) 2 0;
(Hs) (a¥f — a}f)err > a¥fmMehr. where p1 = min{C, D},d; = max{4, B}.
Then system (1.1) has at least one positive w-periodic solution.

Proof. Consider the system

‘ua(t)
ui(t) ai3(t)e ug (t)—un (t) _
uy(t) = gt em™) - m@)es® § gn® +Dy(t)(e 1)

!
1

w(8) = 9a(t, 1) + Dafp) (e =42 — 1 2.)
;

(t—7)
_ 3 “ (t) a:;(t)e“l
(t) = a3(t) a/4 (t)e 3 + m(t)eua(t) + eul(t—‘r)

U

Let x;(t) = %) 4 = 1,2,3. Then system (1.2) changes into system (2.1). Hence
it is easy to see that system (2.1) has an w-periodic solution (u(t), u3(t), u§(t))7,
and then (e*1(®), %) 43T is 4 positive w-periodic solution of system (1.2).
Therefore, for (1.2) to have at least one positive w-periodic solution, it is suffi-
cient that (2.1) have at least one w-periodic solution. In order to apply Lemma
2.1 to system (2.1), we take

X = Z = {u(t) = (ur(t), ua(t), ua(t)” € C(R, B),u(t + w) = u(t))

and
3
ol = s )00, (0] = 3 )
for any u € X(or Z). Then X and Z are Banach spaces with the norm || -||. Let

a13(t)e¥s® o
0 (ta eul(t)) (t);i;(g(z) + eul(t) + Dl( )( 2(t)—uy(t) _ 1)
Nu= | ga(t,e"®) + D(t)(e" =% — 1) , ueX
as (t)e"l (t—7)
m(t)eua(t)+eu1(t_-,)

—aa(t) - ag(t)ev® +

du(t) 1 /v 1 /v
Lu= ! = = — . — R
u=u T Pu ” /0 u(t)dt, velX;, Qz ” /0 2(t)dt, z2€Z
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Then it follows that

KerL=R3 ImL= {z €z :/ z(t)dt = 0} is closed in Z,
0

dimKerL = 3 = codimImL,

and P, @ are continuous projectors such that ImP = KerL, Ker@ = ImL =
Im(I — Q). Therefore, L is a Fredholm mapping of index zero. Furthermore, the
generalized inverse (to L), Kp: ImL — KerP N DomlL is given by

Thus

and

Kp(z) = /Ot z(s)ds — %/Ow /ot z(s)dsdt.

[ 1/wfqu 1(s)ds ]
QNU = l/wfqu F2 s)ds
1w [y Fs(s)ds

fOFl(s ds—1/w [} fOFl s)dsdt + (1/2 — t/w) fo Fi(s

Kp(I-Q)Nu = fo Fy(s)ds —1/w [} foF2 s)dsdt + (1/2 —t/w) [’ Fa(s

where

and

fO F3 dS - l/wfo fO F3 dsdt+ (1/2—t/w)f0 F3

wi(s a3(s)e™(*)
Fl(s) = 91(8,6 ( )) - m(s)eus(s) + emils

Fy(s) = ga(s,€"*)) + Dy(s)(em (Do) — 1)

) + Dl(s)(euz(S)—ul(S) -1)

az(s)e*(s=7)
m(s)eua(s—'r) + ent (s=7)°

F3(s) = —as(s) — aq(s)e™(® +

Obviously, QN and Kp(I — Q)N are continuous. It is not difficult to show that
Kp(I - Q)N(R) is compact for any open bounded 2 C X by using the Arzela-
Ascoli theorem. Moreover, QN (ﬁ) is clearly bounded. Thus, N is L-compact
on Q with any open bounded set O C X.

Now we reach the point where we search for an appropriate open bounded
subset Q for the application of the continuation theorem (Lemma 2.1). Corre-
sponding to the operator equation Lz = ANz, A € (0,1), we have

4

\

a13(te ua(t)
( )eug(t) + ew (t)

ui(t) = A [gl (¢, e"‘(t)) - + Dy (t)(euz(t)—ul(t) _ 1)]

uh(t) = A [gz(t, eu2()) 4 Dy(t) (e (O-u2(t) _ 1)]

asi (t)e“l (t—7) ]

VPN PP

(2.2)

Assume that u = u(t) € X is a solution of system (2.2) for a certain A € (0, 1).

y
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Because of (u;(t), ug(t), us(t))T € X, there exist &;,m; € [0, w] such that

(&) = i(t), () = min u;(t), 1=1,2,3.
wi(é:) tg[l&ﬁ}U(t) ui(n;) tén[é,‘?u]“() i 3

It is clear that
u(&)=0, ui(m)=0, i=1,23.
From this and system (2.2), we obtain

uz(fl)
we)y . os(&)e wa(€)=m (1) _ 1y —
916, e — s @ et T DHE)(ETRTERI-1) =0, (23)
g2(€2, ")) + Dy(ga)(em ¥2)—2(82) _ 1) = (2.4)

a3l ({3)3“1(53—7)
m(€3)e“3 (63—7)+en1(€3-7)

—a3(€3) — ag(€3)e™ + =0, (2.5)

u a 6“3("71) —u
aalm, ) - —ABIELyp ()(esam =) ) =0, (26
g2(, €%3)) 1 Dy () (e () —valm) _ 1) =, (2.7)

u1 (n3—7)
- _ u3(73) az1(ns)e =
a3(ma) = aa(me)e™ ™ + ey T g )

There two cases to be considered for (2.3) and (2.4).
Case 1. Assume that u1(£;) > up(€2). Then ui(€1) 2> ua(61).
From this and (2.3), we have
ar3(61)es)
(El)€u3(€l) + ewi(§1) -
which, together with condition (H;) in Theorem (2.1), gives

U1 (61) < A. (29)

0.  (28)

D (51)(81*2(51)—“1(61) -1)>0

v1(f1)y
a1(&a,e ) —

Thus
’U,Q(EQ) < u1(§1) < A. (2.10)

Case 2. Assume that u; (1) < uz(€2). Then u;(&2) < ua(&2).
From this and (2.4), we have

g2(82, "2 = —Dy(g) (e @76 — 1) > q,

which, together with condition (Hz) in Theorem 2.1, gives

UQ({g) < B. (2.11)
Thus
’U,l({l) < U2(§2) < B. (2.12)
From case 1 and case 2, we obtain
u1(€1) < max{A, B} def dy (2.13)

U2(§2) < max{A, B} =d; (214)
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From (2.5), we get

u1(€3—7)
alevales) < gy(gg)em (@) < —cul&a)e

M
S T(Ea)eva&-) 1 gum@-n < %

Thus

ua(&a) < In(=H) ¢ ds. (2.15)

There are two cases to consider for (2.6) and (2.7).

Case 1. Assume that u1(m) < ua(n2). Then ui(m) < uz(m). From this
and (2.5), we have

M
[}
4

u3(m )
wi(m)y - __ G1s(m)e* _ walm)=wa(m) _
gi(m,e ) m(ny )eus(m) 4 ev1(m) Di(m)(e 1)
als(nl)eus(nl) (%)M
/rn('rh)eu.'!(nl) + eul("ll) ™m

which, together with condition (Hz) in Theorem 2.1, gives
ur(m) > C, (2.16)

Hence
uz(me) > u1(m) > C. (2.17)

Case 2. Assume that uy(m) > ug(n2). Then ui(n2) > ua(ne). From this
and (2.7), we have

go(m, €%2(M)) = ~ Dy () (e (M) —2(m) _ 1) < 0
which together with condition (Hy) in Theorem 2.1, gives

up(ne) > D. (2.18)
Hence
u1(m) > ua(me) > D. (2.19)
From case 1 and case 2, we have
ui(m) > min{C, D} & p, (2.20)
uz(mz) > min{C,D} = p; (2.21)
From (2.8)and theorem!1(Hs),noting that —m((ltz)le(z% is increasing with z,
we obtain z
M jus( u a‘3lepl M
alfe*3(™) > gy(ns)e™o (™) > e e %
and ! M M_M.,d
a3 — a3’ )ef* —ay"m™e* 4
us(s) > In S =) 2 %! ps. (2.22)

a}(mMed + ef1)
From (2.11)-(2.22), we obtain that for Vt € R,

lur ()] < max{|da, |} < Ry,
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d
ua(t)] < max{jdil; o1} % Ra,

and .
Jus(#)] < max{las|, |os]} < Rs.

3
Clearly, R;{i = 1,2,3) are independent of A. Denote M = }_ R; + Ry, here Ry
i=1
is taken sufficiently large such that each solution (a*,8",7*)7 of the following
system:

61367 E B
t1,e%) = ———r— -1)=0,
91(t1,€%) m(t3)e + e T Dife )
g2(t2,€%) + Da(e*™P — 1) =0, (2.23)
aze”

—a3 — age” + ——————— =
3™ +m(t4)e”¥+e"

satisfies [|(a*, 8%, 7")T|| = la*] + |8*| + |7*| < M, provided that system (2.23)
has a solution or a number of solutions, and that
max{[d1], [p1{} + max{|ds], [p1{} + max{|ds], o3} < M,

where t; € (0, w) will appear in QNu below.
Now we take Q = {u = (u1(t), u2(t), u3(t))T € X : Jjul] < M}. This satisfies
condition (i) of lemma 2.1. When u € QN KerL = 80N R3, u is a constant

3
vector in R® with Z |us| = M. If system (2.23) has one or more solutions, then

=1
ury ﬁ_ T, {pU2—t1 __
g1(t1,e") mts)e™s + ent + Dife 1)
QNu= | ga(tz, ) + Dp(e* ™™ — 1) #(0,0,0)T

dize™
m(ts)ets + et
where t; € (0, w) are one constant.
If system (2.23) does not have a solution, then naturally

QNu # (0,0,0)7.

This shows that condition (ii) of Lemma 2.1 is satisfied finally. We will prove
that condition (iii) of Lemma 2.1 is satisfied, we only prove that when u €
0N KerL = 0Q N R%, deg{JQNu,00N KerL,(0,0,0)T} # 0. When u €

3
NN KerL = 80N R3,u is a constant vector in R3 with Y |u;| = M. Before
i=1

our proof is completed, we will prove several Lemmas at first.

—a3 — aqe™ +

Lemma 2.2. Homotopic mapping and coincidence degree meet the following
exrpressions

deg{JQNu, QN KerL,(0,0,0)T} = deg{ (g(t;, e"1), g(tz,€*?),
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a31e*!

T3 — Qg™+ ——————
m(ts)evs + ew

_ hse—“S)T,Q N KerL,(0,0,0)7}

Proof. we define mapping ¢, : DomL x [0,1] —» X by

g1(t1,€*)
g‘Z(tz’ euz)

—ag4e"® +

¢1(U1,u21u3,l$1) = (_1316u1

m(ts)e¥s + ew

ay3evs
m(tz)e¥s + e
+u E2(éu1)—u2 ~1)
—a3

+Dy(e" ™ ~1)

where y; € [0, 1] is a parameter, when u = (uy,uz, u3)” € 0QNKerL = 0QNR3,

3
u is a constant vector in R with " |u;] = M. We will show that when u €
i=1
0 N KerL, ¢1(u1,ug,us, 1) # 0.If the conclusion is not true, i.e., constant
3

vector u with Y |u;| = M, satisfies ¢y (u1, u2, us, 1) = 0, then from

=1

—G13e™?
ty,e*) +
91(1 ) ,Ul( (

tz)eus 4 eu + Dy - 1)> -0

a3 e
m(ty)e¥s + e

it follows the arguments of (2.11)-(2.22)that |u;| < R;, i=1,2, |ug| < Rs.
3

3
Thus Z |us| < 2Ry + R3 < M. which contradicts the fact that _ |u;| = M.
i=1 i=1
According to topological degree theory, we have

deg{(JQN,QN KerL,(0,0,0)7)}
= deg{¢1(u1, u2, us, l)T, QN KerL,(0,0, O)T
= deg{1(u1,uz2,u3,0)7,QN KerL, (0,0, 0)7

gz(tg,e"z) + /.lflﬁz(eulwu2 - 1) =0and —aqe*® + —puaz =0

)}

)}

— T
_ u u 5 U azie™

- deg{ (!h(tl,e ') 92(t2, €*?), —84€™ + m(ty)evs + eu1) ’

QN KerL, (0,0, O)T)} O

Lemma 2.3. Homotopic mapping and coincidence degree meet the following
eTpressions

u u = aze™! T T
d ty,e1), ga(ta, €47), ~Gge™® + ——atie
oo {(an(t1,6), ltn, ), -aae™ + — Sy 0 Kerl, (00,07))
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= T
a3 e™
= de {(a —aye", g(to, e“?), ~a4e"? + —————
g 1 11 sg( 2y )1 4 + m(t4)e”3 Fewm y

QN KerL, (0,0, O)T)}
where ay,a1; are two chosen positive constants such that C < In a%ll— < A,

Proof. We define the mapping @5 : DomL x [0,1] = X by

a1 —aje™
tg,€%?
¢2(ulau2’u3al‘l’2) = H2 92( > Egze "
—a4e"3 0
m(tg)evs 4 e
gi(t1,e*)
(t
+(1 - pa) 92(t2, a31)e“‘
—a4e"3 + }

m(ty)evs + e

2(a; — a11e™) + (1 — u2)ga (t1, €*)
(t27eu2)
a31e

—a eua [
et m(ts)evs + ew

where po € [0,1] is a parameter. We will prove that when u € 9Q N KerL,
¢2(u1,uz,u3, u2) # (0,0,0)T. When u € 80N KerL = 8QN R3, u is a constant
3

vector in R® with 3" |u;| = M. Now we consider two possible cases:
=1

(i) uy > A, (ii) ug < A.

(1) when u; > A, from condition (iii) in theorem 2.1, we have g(t1,e**) <0.
Moreover, a; —aj1e* < a;—ajje? <0, thus pa(a; —aie)+(1—pu2)g(t, e“) <
0. Therefore, ¢ (ug,u2,u3, p2) # (0,0,0)T.

(i) when u; < A, if u; < C, then from condition (H3) in theorem 2.1, we
have g(t1,e*1) > 0. At the same time, a; —a;1e** > a; —a1,e¢ > 0. Therefore,
é1(u1, u2, u3, u2) # (0,0,0)T. If u; > C, we also consider two possible cases: (a)
uy > B; (b) wupx < B.

() when ug > B, from condition (H3) in Theorem 2.1, we have go(t2, €“2) < 0
Therefore ¢y (u1, u2, us, p2) # (0,0,0)T.

(b) when up < B, If up < D, then from condition (Hy) in Theorem 2.1, we
obtain gs(ts,e¥?) > 0. Consequently ¢a(ug, ug,u3, u2) # (0,0,0)7. If up > D,
we can claim when u € QN KerL = 8Q N R3, ¢o(u1,uz, u3, p2) # (0,0,0)7,
otherwise from

as et

—a4€"? + —————— = ),
e+ m(ty)evs + ew

a3
we have e¥? < —
Qg
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and
g2 —a4ePt + \/(—a4ef1)2 + 4 — Gam(ts)az e ’
264m(t4)
e,
uz < lnasg; —Inay,
—aqeP? —G4eP1)2 + 4 — agm(ts)asefr
uz > In agefr + \/( 0:46_ ) + a4m( 4)(1316 .
2a4m(t4)

Thus

lu1| < max{|di|, [p1}}, |uz| < max{|di},|p1|}

and |us| < max{|ds|,|p3|}. Therefore

3
> luil < max{ldy], |pa} + max{lda], Jo1 |} + max{|ds], los} < M,
i=1
3
which contradicts the fact that ) |u;| = M. Based on the above discussion,
i=1

for any u € 8Q N KerL, we have ¢2(u1, u2, u3, 2) # (0,0,0)T. According to
topological degree theory, we obtain

_ a3 e™
de ( t ’ “ ) t ’ e*? y —Q e"?
g{ 91(t1,€™), (g2(t2, €%?), —0ge™ + mta)e™s + ev

= deg{da(u1, uz,u3,1)7T, Q2N KerL, (0,0,0)T}
= deg{¢a(u1, u2, us, 0)7,Qn KerL,(0,0,0)7}

T T
) QN KerL, (0,0,0) }

o
= deg{(a1 — a11€™, g2(t2,€"?), —@ge™ + — Ja )T,QNKerL,(0,0,0)7}

(ta)eve + en

Lemma 2.4. Homotopic mapping and coincidence degree meet the following
eTpTessions

e T o KerL, (0,0,0)7)
m(t4)e"3+e“1 ) erL,\L, U,

- T
— az e
=de {(al —ape™,a; — agpe™?, —aq4e™® + —)
g ) ? m(t4)€u3 + et )

QN KerL, (0,0, o)T)}

deg {(al - aue“‘),gg(tz, e"’), —aqe™® +
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Proof. we define the mapping ¢3: DomL x [0,1] — X by

a; —ap et
a2 — agpe™
¢3(u1,u2,u3,ll3) = U3 2 22&‘312'”1
_6461"3 _I_ e e et
m(tg)evs + ew
a; — a;e*)
o, e"?
1~ 1) e .,
T
m(tg)ess + ew
a1 —aje™t
_ | Hala2 —aze™) + (1 - ps)g(ts, )
az et
—q4e% + 3

m(ts)evs + evr’

where p3 € [0,1] is a parameter, and ag,a2; are two closen positive constants
a

such that D < In a’fz“ < B, We will prove that when u € QN KerL, ¢3(u1, uz,
22

ug3, pu2) # (0,0,0)T. If is not true, then constant vector u satisfies @3(ug, ug, us,

3
p2) # (0,0,0)T with ZI |u;] = M. Thus we have
i=

a1 —ane*! =0, (2.24)

aloa = azae'®) + 1 = pa)galin, ) =0, (2:25)

"‘_46 3 -+ =0. .26
ase ds1¢ 2

m(tg)e¥s + e
(2.24) implies
C<u=In2 <A (2.27)
a11
We clain that us < B; otherwise, if up > B, then from condition (Hs) in
Theorem 2.1, we have
(1 — u3)ga(tz,e™) <0,

and consequently
ps(az — az2e™?) + (1 — p3)ga(t2, €*2) < 0,

which contradicts (2.23), We also claim that ug > D. If up < D, then go(t2, €¥2) >
0. Moreover ag — ae¥? > az — age? > 0.

Thus ug(az —azee*?)+(1— p3)ga(ta, €¥2) > 0, which contradicts (2.24),(2.26)

a3 e™t

W = 0, that is, uz < Inas; —Inay4 and

gives —aqe™® +

~@4e”t + \/(—84€P1)2 + 4 — Gym(ts)G31€P
25,4m(t4) '

uz > In
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Thus |u1| < max{|di|,|p1]}, |u2| < max{|di],|p1]} and |us| < max{|ds|, |ps|}.
Therefore

3
Y lwi| < max{|di],|o1]} + max{|di], |0}

=1

+ max{ldlil’ |p3l} <M,

which leads to a contradiction. Therefore, by means of topological degree theory.
We have

—
deg { (al - alleuIvQQ(tﬁ)euz)’-a4eua + m( fdai® )79 nKﬁTL, (O,Oio)T}

tg)ews + en
= deg{pa(u1,u2,u3,1)T,QN KerL,(0,0,0)T}
= deg{¢3(u1au27 Uus, O)Ta an KGTL, (O’ 0, O)T}
631€u1

W),Q ﬂKe'f'L, (O, O,O)T}

= deg{(a1 — a11€™,a2 — azee™?, —Tge™® +

O

From above Lemma , we have

Lemma 2.5. Homotopic mapping and coincidence degree meet the following
eTpressions

deg{JQNu,QN KerL,(0,0,0)"}
a31e™ )
m(ty)eys + ewr )’

QN KerL, (0,0,0)7 } 0.

= deg{ (a1 —a11e™, ag — age™?, —age*? +

Proof. Because of condition (Hs) in Theorem 2.1, the system of algebraic equa-
tions
a; —a1nT = 0
a2 — a2y =0
a3l T _
mty)z+z

has a unique solution (z*,3*,2*)T which satisfies:

042 +

25} as
*=—>0, y'=-—"=>0,
a11 a2

T +/(asz*)? + dagm(ts)as o*
- 2d4m(t4)
Thus

— a3 e™
deg { (a1 —ay1e", ag — agge¥?, —age™® + ol

I A T
o T ),2n KerL, (0,0,0) }
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—au:l:* 0 0

0 —agzy* 0 = -1

_ Ealm(t4)a:*z* )
[m(ta)z* + z*?

0 —q42"

Therefore from (2.20), we have
deg{JQNu,QN KerL,(0,0,0)T} = -1#£0. O

From Lemma 2.1 to Lemma 2.5,0Obviously we have the results of Theorem
2.1.

3. Global attractivity of positive periodic solution

In this section,by constructing a lyapunov function,we derive sufficient con-
dition for the global attractivity of a postive solutions system (1.2).

Lemma 3.1(Barbalat’s Lemma [9]). Let f be nonegative function defined on
[0, +00) such that f is integrable and uniformly continuous on [0,+00). Then

im f(6)=0

Theorem 3.1. For system (1.2), assume that the conditions in Theorem 2.1
and the following conditions hold:
i) There exists two positive constants G1 and G2 such that
0gi(t, z)
Oz
i) Gy > Qg—+-——‘1%+a§{ ;
eP1 mteP3 + eP1
DM
i) G > 24
iv) af > -——a% +agim .
mLePS -+ ef1
Then system (1.2) has a positive w—periodic solution which attracts all positive
solutions.

<-G; for t>0,i=1,2;
M

Proof. According to Theorem 2.1, system (2.1) has at least one positive w—periodic
solution (z3(t))7, (z3(t))7, (z5(t))T such that for ¢t > 0, e < z}(t) < e¥, Pt <
z3(t) < e, e” <zj(t) < e®.

Suppose that (z1(t), ze(t), z3(t))T is an arbitrary positive solution of system
(1.2) with the initial conditions z;(s) >0, s € [-7,0), ¢=1,2,3.
Consider the following Lyapunov function defined by

3 M, M t
Vi) = 3 nai(t) = Inai () + —roro [ loals) ~ai(s)lds

i=1

o t
43 / |z1(s) — z}(8)|ds.
t—7

mbeps 4 e,
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Calculating the upper right derivative of V() along the solutions of system (2.1),
we have

D*V() = samlar (-3 (6) {1 0} (a1 (0)- [ SO

aslsil) |, p, [l )y

m(t)zy(t) + 3 (t) zi(t)  zi(t)
A N
) ) as1 ()71 (t = 7)
+ sgn(z3(t) — z3 (t)){ — aq(t)[za(t) — 23(2)] + m(t)xas(lt - Tl) +z(t—7)
as1(t)z1(t —7) agim"

|z3(t) — 23(2)]

—m(t)zg(t —T)+zi(t—7) mbers +em

adfmM . afmM .
mlwl(t) —zi(t)| - mh«‘s(t—ﬂ —z3(t —7)|
a¥imM .
-~ i (t - 1) - 5i(t - 7))}
< Gilz(t) (t) — z5(t)| — Galza(t) — z3(2)]
DM L
+;.;;|931(t) z1(t)| — ag|z3(t) — z3(t)]
M
adlm .
mlws(t) —z3(t)| + ml z1(t) — 21 (2)]

(-2 s - (- )

‘e mlem +em
MM

M
* L Gz m @31
oa(9) = 2500 - (o = 2P - 2 o) - 5300

It follows from the conditions (i¢) — (iv) in Theorem 3.1 that there exists a
constant o > 0 such that

3
DTV(t) < —a)_|z:(t) - z}(®)], t>0.
i=1

Integrating both sides of the inequality above on [0, ] leads to

+a/ Z|x, s) — z;(s)|ds < V(0) < 400, t>0,
which implies that z |z:(t) — z}(t)| € L![0,+00) and

lenx, —Inzl(t)] < V(t) € V(0) < 400, t>0.
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From the boundedness of z} (t), (¢ = 1,2, 3), it follows that z;(t), (¢ = 1,2, 3) is

bounded for t > 0. Thus z; —z}(t), (i = 1,2, 3) remains bounded on [0, +00),that
3

is Z lzi(t) — zf(t)| is bounded and uniformly continuous,Hence > |z;(t) —
i i=1

( )] — 0, — 0 due to Lemma 3.1.Therefore
t_l}_r:lmm(t) —-zi(t)|=0, i=1,2,3,

which implies that system(1.2) has a positive w—periodic solution which attracts
all the other positive solutions. O

4., Some examples

Consider the following system (4.1),

a13(t)z3(t)
m( ) ( ) +l‘1(t)) + Dl(t)(.'Ez(t) _‘Tl(t))

= Z(t)(a2(t) — ana(t)z2(t) + Da(t )( 1(t) — z2(t))

T
wh = z3(t)(~as(t) — as(t)ms(t) + m(t)xzs(lt(i)f‘l)(:‘;: ()t =)

zy = z1(t)(a1(t) — anr(t)z1(t) -

)

(4.1)
where T > 0 is a positive constant and all the parameters are positive continuous
w-periodic functions with periodic w > 0.

In Theorem 2.1, g1(t, €*) = a1(t) — a11(t)e®, ga(t, e*) = aa(t) — az(t)e®. It is
M o

easily shown that if > In (a ) then gi(t,e*) <Oandifz >1In ( ) then
a ab,

11
ga(t, e®) < 0. We also can show if

zr<lIn

M
then g;(t,e*) > (%) and if z £ 2 , then ga(t, e*) > 0.
ady’

Hence , corresponding to Theorem 2.1

a;3\M
oM aM — (—) oM
A=ln(—%—), C=—-0" D=ln—,2—
a a
22 11 Qg9

By Theorem 2.1, we have the following theorem:

Theorem 4.1. If the following conditions hold:
(H1) o > (ﬂi)M
1 1 m

(Hz2) @z > a3
Then system (4.1) has at least one positive w—periodic solution.
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Below we will apply Theorem 3.1 to example 4.1. It is clear that

M _ (3™
% m ay!
L _ L _
Gi=ap;, G2=a3z,, pr=max{ln 7 yIn—=— ¢,
a3y )
(a1 — af")e* — affmMeh ad’ ad]
p3 =1In M (g T o , di=In-5-, dy=In—r.
a(mMed 4 err) aho a4

Then we can obtain the theorem as follows.

Theorem 4.2. Besides (H1) — (Hz) in Theorem 4.1 ,if system (4.1) satisfies

the following conditions:

) DM aM + oM " DM
i 2 13 31 l 1
l) all > —_— n) a22 > —

ers  mlers 4 e, e

! a{"gf, +a§’1’mM

i) ay > ————
) 4 miePs 4+ eP1

Then system (4.1) has an attractive positive w—periodic solution.

REFERENCES

. Y.K.Li, positive pertodic solution of neutral predator-prey system, Applied Mathematics

and Mechanics 20(5)(1999),545-550. (in Chinese)

. Z. Q. Zhang and Z. C. Wang, The ezitence of a periodic solution for a generalized prey-

predator system with delay, Math. Proc. camb, phic.soc 137 (2004),475-487.

. Z. Q. Zhang and X. W. Zeng, periodic solution of a nonautonomous stage-structured signle

species model with diffusion, Quarterly of Applied Mathematics, 63(2)(2005),277-289.

. F.Jose, V. Santiago, An approzimation for prey-predator models with time delay, physica

D 110(3-4)(1997),313-322.

. Y. N. Xiao, L.S. Chen, Modeling and analysis of predator-pry model with disease in the

prey, Math. Biosci 171(1) (2001), 59-82.

. R. Xu, L. S. Chen, Peristence and stability for two-species ratio-dependent predator-prey

system with time delay in a two-pach environment, Computers Math. Applic 40(2000),577-
588.

. C. Shihua and W. Feng, ositive periodic solution of two-species ratio-dependent predator-

prey system with time delay in two-patch environment, Applied Mathematics and Compu-
tation 150(2004),737-748.

. R. E. Gaines and J. L. Mawhin, Coincidence degree and non-linear differential equations,

spring, Berlin, (1977).

. K.Gopalsmy, Stability and oscillation in delay differential equations of population

dynamics, Mathematics and its application, voll.74, Kluwer Academic Publishers
Group,Dordrecht,1992.

Xinmin Wu Professor at Shaoyang University ,majors in studying differential equations.So
far he has published more 20 articles with respect to functional differential equations.

Department of Mathematics, Shaoyang University, Hunan,Shaoyang,422000,P.R.China.
e-mail: wxm6138@163.com

Huilan Wang

Dept of Mathematics, Nanhua University,Hengyang , Hunan, P.R.China



