A Study of Waveform Inversion for Improvement of Sub-Salt Migration Image

암염돔 하부 구조의 구조보정 영상 개선을 위한 파형역산 기법 연구

  • Ha, Wan-Soo (Department of Energy Systems Engineering, Seoul National University) ;
  • Pyun, Suk-Joon (Research Institute of Energy and Resources, Seoul National University) ;
  • Son, Woo-Hyun (Department of Energy Systems Engineering, Seoul National University) ;
  • Shin, Chang-Soo (Department of Energy Systems Engineering, Seoul National University) ;
  • Ko, Seung-Won (Korea National Oil Company) ;
  • Seo, Young-Tak (Korea National Oil Company)
  • 하완수 (서울대학교 에너지시스템공학부) ;
  • 편석준 (서울대학교 에너지자원신기술연구소) ;
  • 손우현 (서울대학교 에너지시스템공학부) ;
  • 신창수 (서울대학교 에너지시스템공학부) ;
  • 고승원 (한국석유공사) ;
  • 서영탁 (한국석유공사)
  • Published : 2008.08.30

Abstract

The sub-salt imaging technique becomes more crucial to detect the hydro-carbonates in petroleum exploration as the target reservoirs get deeper. However, the weak reflections from the sub-salt structures prevent us from obtaining high fidelity sub-salt image. As an effort to overcome this difficulty, we applied the waveform inversion by implementing multi-grid technique to the sub-salt imaging. Through the comparison between the conventional waveform inversion using fixed grid and the multi-grid technique, we confirmed that the waveform inversion using multi-grid technique has advantages over the conventional fixed grid waveform inversion. We showed that the multi-grid technique can complement he velocity estimation result of the waveform inversion for imaging the sub-salt structures, of which velocity model cannot be obtained correctly by the conventional fixed grid waveform inversion.

석유탐사 분야에서 탐사대상이 되는 저류층이 갈수록 심부화되고 복잡한 지층 구조로 옮겨감에 따라 암염층 하부 구조를 영상화하는 기술은 석유 및 가스층의 탐지를 위해 매우 중요하게 부각되고 있다. 그러나 암염돔 구조의 특성상 안염돔 하부로부터의 반사 에너지가 미약하기 때문에 하부구조의 정확한 영상을 얻기는 힘들다. 이러한 어려움을 극복하고자 본 연구에서는 암염돔 하부 구조 영상화를 위해 다중격자(multi-grid) 기법을 사용하여 파형역산을 수행하였다. 고정격자를 이용한 통상적인 주파수 영역 파형역산 기법으로 얻은 결과와의 비교를 통해 암염돔 구조 및 하부 구조의 영상화에서 다중격자를 적용한 파형역산 기법의 장점을 확인하였다. 본 연구 결과를 통해 고정격자를 이용한 파형역산 기법으로 정확한 영상을 얻기 어려웠던 암염돔 구조에서도 다중격자를 적용하여 향상된 영상을 얻을 수 있음을 보여 주었다.

Keywords

References

  1. Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse-time migration, Geophysics, 48, 1514-1524 https://doi.org/10.1190/1.1441434
  2. Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion, Geophysics, 60, 1457-1473 https://doi.org/10.1190/1.1443880
  3. Claerbout, J. F., and Muir, F., 1973, Robust modeling with erratic data, Geophysics, 38, 826-844 https://doi.org/10.1190/1.1440378
  4. Fornberg, B., 1987, The pseudospectral method: Comparisons with finite-differences for the elastic wave equation, Geophysics, 52, 483-501 https://doi.org/10.1190/1.1442319
  5. Gazdag, J., 1981, Modeling of the acoustic wave equation with transform methods, Geophysics, 46, 854-859 https://doi.org/10.1190/1.1441223
  6. Gauthier, O., Virieux, J., and Tarantola, A., 1986, Twodimensional nonlinear inversion of seismic waveforms: Numerical results, Geophysics, 51, 1387-1403 https://doi.org/10.1190/1.1442188
  7. Geller, R. J., and Hara, T., 1993, Two efficient algorithms for iterative linearized inversion of seismic waveform data, Geophysical Journal International, 115, 699-710 https://doi.org/10.1111/j.1365-246X.1993.tb01488.x
  8. Hemon, C., 1978, Equations d'onde et modeles, Geophysical Prospecting, 26, 790-821 https://doi.org/10.1111/j.1365-2478.1978.tb01634.x
  9. Kolb, P., Collino, F., and Lailly, P., 1986, Prestack inversion of a 1D medium, Proceedings of the Institute of Electrical and Electronics Engineers, Inc., 74, 498-506
  10. Kosloff, D. D., and Baysal, E., 1982, Forward modeling by a Fourier method, Geophysics, 47, 1402-1412 https://doi.org/10.1190/1.1441288
  11. Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migration, Conference on inverse scattering: Theory and Application, Society for Industrial and Applied Mathematics
  12. Loewenthal, D., and Mufti, I. R., 1983, Reverse time migration in spatial frequency domain, Geophysics, 48, 627-635 https://doi.org/10.1190/1.1441493
  13. McMechan, G. A., 1983, Migration by exploration of timedependent boundary values, Geophysical Prospecting, 31, 413-420 https://doi.org/10.1111/j.1365-2478.1983.tb01060.x
  14. Pica, A., Diet, J. P., and Tarantola, A., 1990, Nonlinear inversion of seismic reflection data in a laterally invariant medium, Geophysics, 55, 284-292 https://doi.org/10.1190/1.1442836
  15. Pratt, R. G., Shin, C., and Hicks, G. J., 1998, Gauss-Newton and full Newton methods in frequency domain seismic waveform inversions, Geophysical Journal International, 133, 341-362 https://doi.org/10.1046/j.1365-246X.1998.00498.x
  16. Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part1: Theory and verification in a physical scale model, Geophysics, 64, 888-901 https://doi.org/10.1190/1.1444597
  17. Pyun, S., 2008, Comparison study of frequency-domain waveform inversion using various objective functions, Ph.D. thesis, Seoul National University
  18. Shin, C., Ko, S., Marfurt, K. J., and Yang, D., 2003, Wave equation calculation of most energetic traveltimes and amplitudes for Kirchhoff prestack migration, Geophysics, 68, 2040-2042 https://doi.org/10.1190/1.1635057
  19. Shin, C., and Min, D. J., 2006, Waveform inversion using a logarithmic wavefield, Geophysics, 71, R31-R42 https://doi.org/10.1190/1.2194523
  20. Shin, C., Pyun, S., and Bednar, J. B., 2007, Comparison of waveform inversion, part 1: conventional wavefield vs logarithmic wavefield, Geophysical Prospecting, 55, 449-464 https://doi.org/10.1111/j.1365-2478.2007.00617.x
  21. Sirgue, L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, Geophysics, 69, 231-248 https://doi.org/10.1190/1.1649391
  22. Symes, W. W., and Carazzone, J. J., 1991, Velocity inversion by differential semblance optimization, Geophysics, 56, 654-663. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266
  23. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266 https://doi.org/10.1190/1.1441754
  24. Whitemore, N. D., 1983, Iterative depth migration by backward time propagation, 53rd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 827-830