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ON NON-ISOMORPHIC GROUPS WITH THE SAME SET OF
ORDER COMPONENTS

MoHAMMAD REZA DARAFSHEH

ABSTRACT. In this paper we will prove that the simple groups Bp(3) and
Cp(3), p an odd prime number, are 2-recognizable by the set of their
order components. More precisely we will prove that if G is a finite group
and OC(G) denotes the set of order components of G, then OC(G) =
OC(B,(3)) if and only if G 2 Bp(3) or Cp(3).

1. Introduction

For a positive integer 7, let 7(n) be the set of all prime divisors of n. If G is
a finite group, we set 7(G) = 7w(|G|). The Gruenberg-Kegel graph of G, or the
prime graph of G, is denoted by GK(G) and is defined as follows. The vertex
set of GK(G) is the set #(G) and two distinct primes p and g are joined by an
edge if and only if G contains an element of order pg. We denote the connected
components of GK(G) by 71, Ta,..., Ty), where s(G) denotes the number
of connected components of GK(G). If the order of G is even, the notation is
chosen so that 2 € 1. It is clear that the order of G can be expressed as the
product of the numbers m1, ms,...,mygq), where m(m;) = 7;, 1 <i < s(G). If
the order of G is even and s(G) > 2, according to our notation ms, ..., M)
are odd numbers. The positive integers mi, ma,...,myg) are called the order
components of G and OC(G) = {m1, ma,...,myq)} is called the set of order
components of G. It is a natural question to ask: If the finite groups G and
H have the same order components does it follow G is isomorphic to H? For
many simple groups H with the number of order components s(H) at least
2, the answer to the above question is affirmative. However if s(H) = 1 the
answer is negative. The simple groups B,(q) and C,,{q) where n = 2™ > 4 and
¢ is odd, have the same order components but they are not isomorphic. Hence
it is natural to adopt the following definition.

Definition 1. Let G be a finite group. The number of non-isomorphic finite
groups with the same order components as G is denoted by h(G) and is called
the h-function of G. For any natural number & we say the finite group G is
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k-recognizable by its set of order components if h(G) = k. If A(G) = 1 we
say that G is characterizable by its set of order components or briefly G is a
characterizable group. In this case G is uniquely determined by the set of its
order components.

Obviously for any finite groups G we have A{(G) > 1. The components of
the Gruenberg-Kegel graph GK(P) of any non-abelian finite simple group P
with GK (P) disconnected are found in [16] from which we can deduce the
component orders of P. These information which will be used in proving our

main result are listed in Tables 1, 2 and 3.

Table 1. The order components of finite simple groups P with s(P) =

an odd prime)

P Restrictions on P my ma
A, 6<n=pp+1,p+2 = P
one of n,n — 2 is not a prime
P 1 . P
Ap—1(q) (p.q) # (3,2), (3,4) - ,,(2) T e -1 =l
P 1 1- P
4p(0) (41| (p+1) %) (g 1)1‘[” - =
2 S i (aP+1)
Ap-1(q) q(z) I—L-l:l - (=19 (e EXE]
P
2 4() (a+1) [ (p+1), (3 ) (gt ) S
(p,q) # (3,3),(5,2) [T = (=)
ZA3(2) 25.3% 5
B.(2) n=2" >4, qodd (" =T @ - farhl)
B, (3) s @+ [0 321 - 1) (67 -1)
Cu(a) n=2">2 " (g - 1)H g% 1) )
S P _
Cp(a) =23 g” (q® +1)H g% — 1) F=%
7 y
Dp(q) p>5, g=2,3,5 i | NG —1) =
y
Dpt1(9) g=2,3 R 1)ql’“’“)(q +1) B=3
(@ -1TT (g% - 1)
Dn(q) n=2">4 g"(»=b 1’[1_1 %) 4
“D.(2) n=2"41>5 2"<" 1>(2"+1)(2" D) 2"t 41
I (22' -1)
2D,(3) 5<p#2™+1 3p(p=1) 1'[ F(3% — [ELESS)
=T
2D, (3) 9<n=2"+1%#p 13n(n= 1>(3"+1)(3" 1—1) [Climt 1)
n—2 24
I -1
G2(q) 2 < qg=e(mod3), e==+1 °(q° -—e)(q — 1)(q + ¢€) g —eq+1
®Da(q) %(¢° - 1)(¢" - 1) @ —¢ +1
(¢*+4°+1)
Fa(q) g odd ¢ - 1(e° - 1) @ —¢ +1
(¢ - 1)
2Fa(2) 211 3% 5% 13
] 3
Eo(q) ¢* (@ - (e - 1)(¢® - 1) Lo tasd)
(&® =1 -D(? -1

Table 1. (Continued)
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Bolg) [ ¢>2 ] (@ - D - 1)(¢° - 1) | Lzl
(¢®+ 1)@ +1)(g° - 1)
Mi» 25.3%.5 11
Jo 27 3% 57 7
Ru 21 3% 5%.7.13 29
He 210733 5273 17
McL 2735537 11
Co; 27T 3% 5% 72 11.13 23
Cos 210 37 557,11 23
Fiy 217.395%.7.11 13
HN 211 3% 55 7.11 19

Table 2. The order components of finite simple groups P with s(P) = 3 (p

an odd prime)

P Restrictions on P mi ma ms
An n>6 n=p, p—2 5;(7"1'72) p p—2
are primes
A1(q) 3 < ¢ = ¢(mod 4), g—c¢ q (q;e)
e=+1
Ai(q) q > 2, qeven q g-1 g+1
A2(2) 8 3 7
2A5(2) 215 38 5 7 11
2Dp(3) p=2"+12>5 2.3P(P=1)(gp=1 _ 1) (3P‘21+1) (7 +1)
I -
Dpt1(2) | p=2"—-1,n>2 2p(+D(2p — 1)
Hf;l(??' - 1) 2P +1 2ptl 1
Ga(q) q = 0(mod 3) (g —1)3 @ —q+1 ¢ +q+1
*G2(q) g=3>"t1>3 (g — 1) g—V3q+1 | g+V3g+1
Fi(q) q even > (¢ 1) (¢? - 1)? q* +1 -7 +1
2Fy(q) g =22+ > 2 2 - 1)@ +1) | @® - V234 | 2+ 263+
9—v2+1 | g+v2g+]1
E7(2) 263 31152 75 11.13. 73 127
17.19.31.43
E7(3) 223 353 52 78.112.13%.
19.37.41.61.73.547 757 1093
M1 24.32 5 11
Moas 27.32.5.7 11 23
Maa 2103357 11 23
J3 27355 17 19
HiS 293253 7 11
P Restrictions on P mi mo ma
Suz 2133752 7 11 13
Cos 21836 53 7 11 23
Fias 218 3135271113 17 23
Fs 215 310 53 7213 19 31

Table 2. (Continued)



140 MOHAMMAD REZA DARAFSHEH

F 241 313.50.72.11.13. | 31 [ 47
17.19.23

Table 3. The order components of finite simple groups P with s(P) > 3

P Restrictions my Mo mg3 My ms | mg
on P
A, (4) 20 3 5 7
’By(q) [ q=2""F1>2 ¢ 9-1 [q¢—+v2q [q+2q
+1 +1
2E6(2) 2% .39 5272 11 13 17 19
Es(q) ¢=23 [ ¢ - 1) (g - 1) | Lo | LAl s
(mod 5) (g - 1)(g*2 -1) +1

(@ -1)(f-1)
@+ ++ 1)

My 27 32 5 7 11
Ji 2335 7 11 19
O'N 29.315.7° 11 19 31
LyS 28.37.55.7.11 31 37 67
Fil, 221 318 52 73.11.13 17 23 29
F 276 320 59 76 112.13%. 41 59 71

17.19.23.29.31.47
TU__5 05 T
Eg(g) | ¢=0,1,4 | ¢ -1)(q" -1 | LoLT | G | ¢ | B

(mod 5) (¢"2 = 1)*(¢'* — 1) +1
(- +¢*+1)
Ta 37 3T T 113 23 29 31 37 |43

In [15] and [14] it is proved that if n = 2™ > 4, then h(B,(q)) = h(Cn(q)) =
2 for g odd and h(B,(q)) = h(C,.(q)) =1 for q even. Apart from the families
By(q) and Cr(g), n = 2™ > 4, ¢q odd, the following groups have been proved
to be characterizable by their order components by various authors. All the
sporadic simple groups [2], PSL2(q), 2D, (3) where 9 < n = 2™ + 1 is not
a prime, *D,1;(2) in [3], [6] and [17], respectively. Some projective special
linear (unitary) groups have been characterized in a series of articles in [9],
(10], [11] and [12]. A few of the alternating or symmetric groups are proved to
be characterizable by their order components in [1] and [13]. Based on these
results we put forward the following conjecture.

Conjecture 1. Let P be a non-abelian finite simple group with s(P) > 2. If
G is a finite group and OC(G) = OC(P), then either G = P or G = B,(q),
Cn(q) where n = 2™ > 4 and ¢ is an odd number or G = B,(3), C,(3), where
p is an odd prime number.

In this paper we consider the simple groups B,(3) and C,(3), where p is
an odd prime, and prove that these groups are 2-recognizable by the set of
their order components. Another names for the group B,(3) are Os,41(3) or
Q2p+1(3), and for Cp(3) is PSPs,(3). More precisely we will prove:

Main Theorem. If a finite group G has the same set of order components as
B,(3), p an odd prime, then G = B,(3) or C,(3).
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2. Preliminary results

The structure of finite groups with disconnected Gruenberg-Kegel graph
follows from Theorem A of [18] which will be stated below:

Lemma 1. Let G be a simple group with s(G) > 2. Then one of the following
hold:

(1) G is either a Frobenius or 2-Frobenius group.

(2) G has a normal series 1 < H I K 4 G such that H is a nilpotent -
group, % is a non-abelian simple group, % i5 @ Ty -group, [%| divides |Out(—§)|
and any odd order component of G is equal to one of the odd order components
of —g—

To deal with the first case in the above Lemma we need the following results
which are taken from [5] and [2], respectively.

Lemma 2. (a) Let G be a Frobenius group of even order with kernel and
complements K and H, respectively. Then s(G) = 2 and the prime graph
components of G are n(H) and n(K).

(b) Let G be a 2-Frobenius group of even order. Then s(G) = 2 and G has
a normal series 1 < H < K < G such that |K| = ma, lH||K| =m; and lKl

divides |H| — 1 and H is a nilpotent m1-group.
Lemma 3 Let G be a finite group with s(G) > 2. If H < G is a w;-group,
then (H | (|H| - 1).

The followmg result of Zsigmondy [19] is important in some number theo-
retical considerations.

Lemma 4. Let n and a be integers greater than 1. There exists a prime divisor
p of a® — 1 such that p does not divide a* — 1 for all 1 < i < n, except in the
following cases.

(1) n=2,a=2%—-1, where k > 2,

(2)n=6,a=2.

The prime p in Lemma 4 is called a Zsigmondy prime for a” ~ 1.

Remark 1. If pis a Zsigmondy prime for a™ — 1, then p > n. Because if p < n,
then n = kp+r, 0 < r < p, and we can write a” — 1 = a"(a*? — a*) + aF+7 - 1.
Since (p,a) = 1 we have a? = a (mod p), hence a*? = a* (mod p), therefore
p | a**™ — 1. By assumption about p we must have k 4+ r > n which implies
k > kp, hence k = 0. Therefore n = r < p contradicting p < n.

l\ext we consider the group Bn(g) whose order according to [7] is |Br(q)]

q 0 Bt q" H q** — 1). The order of the outer automorphism group of

B, (q) is (2, q—l)flfqlsoddorn>2 and it is 2f if ¢ is even and n = 2,
where ¢ = p/ is a power of a prime p. If ¢ = 2™ is a power of 2 it is known
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that for any natural number n we have B,(2™) = C,(2™) where C,(2™)
is the projective special symplectic group. In general the groups B,(g) and
Cn(g) have the same order, but the groups B,(q) and C,(q) with g odd are
not isomorphic. By [16] the group B,(g) has a disconnected Gruenberg-Kegel
graph if and only if » = 2™ > 4 with ¢ an odd number, or n = p is an odd
prime number and ¢ = 3. It is proved in [14] that if n = 2™ > 4 and ¢ is an odd
prime power then h(B,(g)) = 2, that is to say there are two non-isomorphic
finite groups with the same set of order components as B,(q) if n = 2™ > 4
with ¢ odd. Therefore it remains to consider the characterizability of the group
By (3). By [16] the prime graph of the group B,(3) has two components with

-1
my =37 (37 + 1) Hé_l (3% —1) and my = 31’——1 . The components of the prime

graph of B,(3) are 71 = 7(3(37 + 1) Hp (3% — 1)) and 7y = w(Z&=L =1). Also,
as can be seen from Table 1, the group C, ( ) has the same order components
as By(3). Our main result asserts that A(B,(3)) = h(C,(3)) = 2.

3. Proof of the main theorem

Let G be a finite group with OC(G) = {m1,m2}, where m; and m, are the
order components of the group B;(3) or Cp(3). In order to use Lemma 1, first
we will prove the following Lemma.

Lemma 5. If G is o finite group with OC(G) = {m1,ms}, then G is neither
a Frobenius nor a 2-Frobenius group.

Proof. First we assume G is a Frobenius group and derive a contradiction.
If H and K denote the complement and the kernel of the Frobenius group G,
respectively, then by Lemma 2 we have OC(G) = {|H|,|K|}. Since |H| | |K|—
we deduce |H| < |K|, from which it follows that |K| = my and |H| = ms. Let
r be a Zsigmondy prime for 37 4 1. Since r # 2 we obtain 7 | ?{T—H' Since
|G| = mims and (mq1,m2) = 1 and |K| = m;, we observe that the order of a
Sylow r-subgroup S of GG, and hence of K, is a divisor of 31’4—+1. Since K is a
nilpotent normal subgroup of G, we obtain S < G and my | |S| — 1 by Lemma
3. But my = £=1 and hence [S| — 1 > my = ¥=L implying |S| > £+ which
contradicts | S| | 2L,

Next we will assume G is a 2-Frobenius group and obtain a contradiction.
In this case by Lemma 2(b) there is a normal series 1 < H < K < G for G such

p—1

that H is a nilpotent m;-group, —g] = mq and ]%l | ( | 1) = Lﬂl
Arguing as above if r is a Zsigmondy prime for 37 + 1, then 7 ¢ [ 4 |, hence
by Lemma 2, r | |H|. If S is a Sylow r—subgroup of H then by Lemma 3,
ma | |S| — 1, therefore |S| > mo +1 = §P7+l contradicting |S} < 37 + 1. The
Lemma is proved. |

Proof of the main theorem. By the Lemmas 1 and 4, if G is a finite group with
OC(G) = {my,m2}, then there is a normal series 1 < H < K < G for G
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such that % is a non-abelian simple group, H and % are my-group and H is
nilpotent. Moreover ]%‘ divides IOut( %)I and the odd order component of G
is one of the odd order components of % and s(%) > 2.

Since P = % is a non-abelian simple group with disconnected Gruenberg-
Kegel graph, by the classification of finite simple groups we have one of the
possibilities in Tables 1, 2 or 3 for P. In the following we deal with these
groups.

Casel. P = 2A3(2)a 2F4(2),7 ‘42(2)7 A2(4)7 2A5(2)’ E7(2), E7(3), 2E6(2)7
or one of the 26 sporadic simple groups listed in Tables 1, 2 or 3.

The odd order component of G is a number of the form my = 3”7_1 and
must be equal to one of the odd order components of the groups listed above.
By inspecting Tables 1, 2 and 3, the largest odd order component of the above
groups is 1093. But for p = 3, 5 and 7 the respected values of my are 13, 121
and 1093, hence we have the following possibilities for P. If p = 7, then
my = 1093 corresponds to P = E7(3), and if p = 3, then mg = 13 corresponds
to the simple groups 2F}(2), Fizs, Suz or 2Eg(2). But examination of each case
gives a contradiction compare with |P| | |G|. Therefore the above possibilities
are ruled out.

Case 2. P> A, and eithern =p', p'+ 1, p' + 2, one of n or n — 2 is not
a prime, or n = p', p’ — 2 are both prime where p’ > 6 is a prime number.

By Tables 1 and 2, the odd order components of A,, are p’ or(and) p' — 2.
Ifp —2=my = 3—p—21l, then p' = :ip—;ﬁ is not a prime number. Therefore we

P __ . . .
may assume p' = =1 is a prime number. In this case we have P = A, and

the order of P must divide the order of G, in particular |A, |, | 37", But the
largest power of 3 dividing p'! is [’;—,] + [%] 4= 31’_—251' If p > 3, then
clearly 551%‘3 > p? and hence [A, |, does not divide |G|;. However if p = 3,
then p' = 13 and |G| = |B;3(3)| = 2°.3°.5.7.13, |A,| = 219.31.52.7.11.13 and
clearly |P| 1 |G|. This final contradiction rules out the possibility of P being
isomorphic to an alternating group.

Case 3. P = 2FE¢(q); Bge(q), g>2.

841 _ 3P-1

In these cases we have , respectively. We will deal with P =

3qE1) 3
Es(g), because the other case is similar. Hence 9(6%;_3—% = 3—"211 If(3,9g—1) =1,

then 2¢3(¢® + 1) = 3» — 3. Clearly ¢ cannot be a power of 3, hence ¢ = 2
(mod 3). Therefore ¢° = 8 (mod 9) from which it follows that 2¢°(¢® + 1) = 0
(mod 9). Since 3 —3 = —3 (mod 9) a contradiction is obtained.

Next we assume (3,¢ — 1) = 3, from which it follows ﬂ:tg;:tl = ¥=1 and
consequently

(%) 2¢°(¢® + 1) = 37! — 5.
From ¢ = 1 (mod 3) we obtain ¢° = 1 (mod 9). Therefore we may write

g% = 149k for some k € N. Since k = 0,10r 2 (mod 3), we will obtain ¢® = 1,10
or 19 (mod 27). Now in any case we deduce 2¢%(¢® + 1) = 4 (mod 27). But
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clearly 371 — 5 = 22 (mod 27) which is against (). This contradiction rules
out the possibility of P = Fg(q). The case P = 2Eg(q) is treated similarly.
Case 4. P = Fy(q), q odd.
By Table 1 the odd order components of Fy(q) is ¢* — ¢® + 1, and hence

¢ —-¢+1= 3—?2_—1 from which it follows that ¢?(¢*> — 1) = ?’(Q'ZJ If the

order components of Fy(q) are denoted by M; and M,, with M; even then

clearly M; = ¢**(¢® — )*(¢? + 1)%(¢* + ¢*> + 1) and from |P| = MM, |

|G| = mimy we obtain M; | m;. Since Ms is a multiple of (g?(¢> — 1))3, from
; -1 -1 p=2 2i

M, | my it follows that 37~1 — 1| (37 + 1)(3?~ + 1) Hi:l,#(p_l)/g(?’ - 1).

Now let r be a Zsigmondy prime for 3?=! — 1. Since r # 2, we must have

p—2 % _ 2j _ . . o el
7| Hizl’#(p_l)/2(3 1). Let r | 3 1forsome j,1<j<p-2, j# 5=

By assumption about r we must have 2§ > p—1. But then from r | 3?~! —1 and
| 3% —1 we deduce 7 | 3% —37~!, hence r | 32=(»=1) —1. Since 2j — (p—1) # 0
we must have 2j — (p — 1) > p — 1 which implies j > p — 1, a contradiction.
Hence this case is ruled out.

Case 5. P = 3Dy(q) or P =2 Ga(q), 2< g=ce (mod 3), e = £1.

The odd order components of 2D4(q) and G2(q) are ¢* —¢*+1 and ¢> —eq+1,

respectively. Equating these numbers with my = 3—}’—2_—1 will yield

g —¢ = 33" -1)/2,

*) ¢ —eq= 33 '-1)/2

clearly from the first equation of () it follows that 3 t ¢. Therefore in both
cases we have 3 { ¢. Since from here on the arguments for 3D4(g) and Ga(q)
are the same, we present the details for ®Dy(q).

Since 3 { ¢ we have ¢ = 1 or 2 (mod 3), and since 9 { ¢* — ¢*> we obtain
¢g=2 4,5 7 (mod9). Hence ¢ # +1 (mod 3). Let ¢ = r/, where r is a
prime number. Clearly 317, hence r = +1 (mod 3) from which it follows that
r® = +1 (mod 9). If f is a multiple of 3, the we set f = 3a for some a € N,
from which it follows that ¢ = r/ = r3* = (£1)* (mod 9). Hence ¢ = *1
(mod 9) depending on whether « is even or odd, which contradicts ¢ # =1
(mod 9). obtained earlier. Therefor f cannot be a multiple of 3.

Now we set I%[ = ¢ and obtain t|H||P| = |G|, where ¢t divides |Out(P)].
But since ¢° = 73/ is a power of the prime r, by [7] we have |Out(P)| = 3f.
Since we proved f is not a multiple of 3, ¢ is either prime to 3 or ¢t = 3. Now
using Table 1 and substituting orders of P and G in ¢ |H||P| = |G| we will
obtain:

—1 .
() HH| @ - D@+ P+ 12 =3 @+ D[] 6 - ),

Since ¢ = 2, 4, 5, 7 (mod 9) we obtain (¢* + ¢> + 1)3 = 3, and so a Sylow
3-subgroup S of H has orders 37" =2 or 37"~% according to (¢,3) =1 or ¢t = 3.
But H is nilpotent, hence S < G and by Lemma 3 it follows that mo | |S] - 1,
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ie., 37 —1|3P°~2 — 1 or 371 — 1| 37"~% — 1 which are impossible. This final
contradiction shows that P = 3Dy(q) is impossible. As we indicated at the
beginning of the proof, the impossibility of P = G2(q), 2 < ¢ = € (mod 3),
€ = *£1, is proved similarly.

Case 6. P~ 2D,(3), 9<n=2"+1#p; 2Dy(3), 5 <p #2m+
1; 2D,(2), n=2m+1>5.

If we equate the odd order components of the above groups with mo we
obtain the following equations respectively: 3"~1 =3P —2, 37 =237 -3, 9" =
37 — 3. Obviously all the above equations are impossible.

Case 7. P 2D, (q), n=2" >4 P=Cu{g), n=2">2o0r P =
B.(q), n=2™ >4, q odd.

" +1 q"+1 " +1
In the above cases the odd order components are Gt Baon O T2
3P—1

respectively. If ¢ is even, then ¢" + 1 = 5= leads to 2¢" = 37 — 3 which
is obviously impossible by [8]. Therefore we assume ¢ is odd and in all the

above cases the odd order component of each of the above group is 912il and

n

9% = 3—p—2"—1 leads to ¢ = 37 — 2. Obviously from this equation we deduce
n < p and (¢,3) = 1. Since ¢" — 1 = 37 — 3 is not a multiple of 9 and n is a
power of 2, we obtain g1 | ¢" — 1 = 37 — 3, hence ¢ = 41 (mod 3). Therefore
g =2, 4, 50r 7 (mod9), implying that ¢ # —1 (mod 9). Now we assume
g = r/ is a power of the prime number r. Since (¢,3) = 1, we have r # 3.
Hence r = £1 (mod 3) implying r® = £1 (mod 9). If f = 3a is a multiple of
3, then

g=15 = (®)* = (£1)* (mod 9) = £1 (mod 9).
Therefore f is not a multiple of 3.
Now if we set || = t, then ¢ | [Out(P)|, where by [7], |Out(*Dn(q))| =

(4,¢" +1)f if ¢ = r7, |Out(B,())] = |0ut(Cn(g)| = (2,¢ — 1) f if g =1/ As
usual we may write t |[H||P| = |G|, from which it follows that

— 3p° (3P Pl a2i
() tH| M =37 (3 + D[] 3 - 1),

-1 .
where M, = ¢"(»~1) Hr,l_l (¢%' — 1) for the group 2D, (q) and M; = ¢"° (¢" —

-1 .

1) Hfl_l (¢** — 1) for both groups C,(q) and B,(q). Since t | |Out(P)|, we see
that t | 4f and since we proved f is not a multiple of 3, we deduce that t is
not a multiple of 3. We consider that 3-part of the expression on the left hand

n—1 .

side of (x). First we calculate the 3-part of the expression H . (¢ —1). If
p==

n—1 .
the 3-part of H'—1 (¢** — 1) is 3%, then since one of ¢+ 1 is a multiple of 3 bus
not a multiple of 9 we obtain k = 2 + [2=1] + [2=] + -+
If we consider the equation (*) for the group 2D, (q), then the order of a
Sylow 3-subgroup S of H would be |S| = 3p° =k, By Lemma 3 we must have
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3 -1 3"~k _ 1 and this implies that k = Ip is a multiple of p. But

n n—1 n—1

k=g i1+ 05

n—-1 n-1 3n—-1
<

]+...<E+ + P
-2 6 18 - 4

which implies 22=L > Ip. Therefore 3n > 4lp + 1, hence n > Ip + > p
contradicting n < p. This contradiction rules out the possibility P & 2D,(q).

If P = C,(q) or B,(q), then the 3-part of M, is (¢" —1)3.3% = 3¥+1 because
n is a power of 2. Therefore the order of a Sylow 3-subgroup of S of G in these
cases is 37" ~(**1) Now similar calculations as above give a contradiction which
rules out the possibilities of P being isomorphic to Cy,(g) or B, (g). This final
contradiction settles Case 7.

Case 8. P> D, 11(q), g=2,30or P= Dp(q),p' 25, ¢=2, 3, 5.

P_1

First suppose P = Dp11(q), ¢ =2, 3. If ¢ = 2, then oF —1= =1 hence

97/+1 — 3 = 1 which is impossible by [8]. If g = 3, then ¥=L = ¥=1 implying

p' = p. But then the 3-part of |D,41(3)| is 37(P+?) which does not divide the
3-part of G which is 37"

Next we assume P & Dy (q),p > 5, ¢ =2, 3, 5.If g = 2, then 20 1= -1
implying 2¢'t1 —3? = 1 which is impossible by [8]. If %—‘—1 = 3,,2_1 , then p' = p.
By setting || = ¢ | |Out(P)| we observe that ¢ | 8 and ¢ |H||P| = |G| which
implies ¢ |H| = 3P(3P + 1). Clearly (37 + 1)2 = 4, hence t = 1, 2, 4. Therefore
|H| =3P(37 + 1), 37(3” +1)/2 or 37(3” 4+ 1)/4. Now let r be a prime divisor of
3P + 1 and consider a Sylow r-subgroup of H. Using Lemma 3 a contradiction
is obtained. ,

Finally if ¢ = 5, then from 5= = =1 we obtain 5* + 1 = 2.37. But p’ is
a prime and either p’ = 1 (mod 6) or p’ =5 (mod 6). If ' =1 (mod 6), then
5" = 5 (mod 9) and if p’ = 5 (mod 6), then 57" = 2 (mod 9). Therefore in
any case 57 + 1 # 0 (mod 9) contradicting the equation 57" 4+ 1 = 2.37. This
final contradiction rules out the groups in Case 8.

Case 9. P = Cy(q), ¢ =2, 3; or By (3).

If P=Cp(q), ¢ =2, 3 then from 2 ~1 = 1’)2_—1 we will obtain 27" +1 —3P =1

which by [8] is impossible. If ¢ = 3, then from %l = ¥=1 we will obtain

p' =pand P = C,p(3). Again by setting || =t we obtain ¢ |H||P| = |G| and
since |G| = |P|, this implies ¢ |[H| = 1. Therefore ¢t = |[H| = 1 implying G = K
=~ P = (C,(3) and this is one of the possibilities in our main theorem.

If P = B, (3), then again p’ = p and similarly G = K = P = B,(3), which
is another possibility in our main theorem. We will prove no other possibility
can occur by considering further simple groups P from Tables 1, 2 and 3.

Case 10. P = Ap’—l(Q), (pI7Q) # (3a2)7 (374)7 AP' (Q)) g-—1 I P+
1; 2Ap_1(q) or Ay (q), ¢—1|p' +1.

In these case because of the similarity in argument we produce the proof of
impossibility of P =2 A, (q), ¢ — 1| p’ + 1. The odd order component of A, (g)
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is 9———— and hence g—jr #¥=1 . From this equation we obtain

(*) ¢ P P g =3(37 ~1)/2.
If ¢ = 3, then from (*) we will obtain p’ = p. Then the order of P = A,(3) has

3-part equal to 3("2") which does not divide 37", Therefore g # 3 and from ()
we deduce that 3 {¢. Hence ¢ = £1 (mod 3). If ¢ = 1 (mod 3), then from (x)
we obtain p’ = 1 (mod 3). But from ¢ ~1|p' + 1 we got p’ = ~1 (mod 3),
a contradiction. Therefore we may assume ¢ = —1 (mod 3). Now (%) may be
rewritten as g7 1 4¢P 24 dg=qF 1 —14¢" 241+ @ —1+q+1l=
3(37~! —1)/2, from which we deduce that ¢ + 1 is not a multiple of 9. Now
g = —1 (mod 3) implies ¢ =2 or 5 (mod 9). From now on the argument is the
same as what was used in the proof of Case 7. We omit the calculations and
end the impossibility of this case.

As it is seen all of the simple groups in Table 1 have been considered. The
Gruenberg-Kegel graph of these groups has two components. Next we will
consider simple groups P with s(P) > 3 which are tabulated in Tables 2 and
3. Some of these groups have already been considered. Therefore we deal with
those which have not been considered.

Case 11. P A,(g), 3 < ¢=¢€ (mod 4), € = +1.

In this case the odd order component is either q or 9—-}5 First we deal with
q = 2 . Clearly ¢ = 1 (mod 4), hence ¢ = 1. If we set '%[ = t, then
t|H||P| = |G|, where t | |Out(P)|, and by [7] we have |Out(P)| = (2,9 — 1)f,
q = rf, r a prime number. From ¢ = -3—%_—1 it is easy to deduce that ¢ = 4
(mod 9), hence 3 { f. Therefore ¢ is prime to 3. Now from ¢ |H||P| = |G| we
obtain t |H| x £¢(¢* — 1) = |G| and simplifying both sides yields:

*) 3tlH| =8 x 3 (3~ + ) [ (8% - 1)

since (¢,3) = 1 from (x) it follows that a Sylow 3-subgroup S of H has order
37"~ We have S < G, because H is a nilpotent group, hence 3 —— [1S]-1=

37°-1 _ 1 which is impossible. Therefore the odd order component g of P

cannot be equal to =1,

Secondly we assume 1‘; = 3”—2‘1 which implies ¢ = 3P —~ 1 — ¢. Therefore
g = 37 — 2 or 3P according to € = +1 or € = +1, respectively. With the same

notation used above, from ¢ |H| |P| = |G| we obtain the following:

-2 R
(k%) 3t|H| (3P —2) =37 (3* + 1)(3¥~! + 1) Hil (3% 1), ife=1

(k% %) 3t|H| =3 H '3% — 1), ife = —1.

If p = 3, then from (xx) and (***) evidently the order of a Sylow 7 and
5-subgroup S of H has order 7 and 3, respectively. Now my = 25 and using
Lemma 3 a contradiction is obtained.
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Therefore we assume p > 3. In the case of (*%x) since ¢ = 37, we obtain
t | 2p, thus 32>~V — 1| |H|. Now if 7 is a Zsigmondy prime for 3*P~! — 1, then
r | 3771 4+ 1, and a Sylow r-subgroup S of H has the property |S| < 3141,
Lemma 3 implies my = 21 | S| — 1, hence |S| > FEL contradicting |S| <
3P~1 4 1. Therefore equation (x*%) is ruled out. For equation (xx) the same
reasoning as used in the proof of Case 7 works. We will not give the details
because of its similarity to Case 7.

Case 12. P = A (q), ¢ > 2 is even.

The odd order components are ¢ — 1 and ¢ + 1. If ¢ +1 = 3?7—17 then
q= 3(31’2—_1) is impossible because ¢ is even. If ¢—1 = %‘—l, then ¢ = ?’p%l and

by [8] there is no solution to the equation.
Case 13. P= 2D, (3), p' =2"+1>5; P2 2Dp44(2), p' =2"—1, n >
2

The odd order components of 2D, (3) are e

1 I3
>+L and 2£EL. If we equate

each of the above numbers with 32—_1, an easy contradiction is obtained.

The odd order components of 2D, 1(2) are 2 + 1 and 2°' 1 + 1. If my =
2? + 1 or 2P+ 4+ 1, then 2P +1 = 3P — 3 or 2¢'+2 = 37 — 3, respectively, and
obviously both equations are impossible.

Case 14. P~ G1(qg), 3| q; 2Ga(q), ¢ =3+ > 3.

The proof of impossibility of both cases is the same. Therefore we assume
P = 2@G,(q). The odd order components of P are ¢ —/3¢+1 and ¢+ +/3¢+1.
If ¢ + /3¢ + 1 = my, then 32+ £ 3m+l = 3G7T=D yhich is obviously
impossible.

Case 15. P = Fy(q), g even.

The odd order components of Fy(q) are ¢*+1 and ¢* —¢*+1. If ¢* +1 = &=L
then ¢* = w, which is impossible because ¢ is a power of 2.

r—1

Ifg* —¢? + 1= 2L then ¢?(¢®2 - 1) = 3(3—2“—1) Now the same argument

as used in Cases 4 or 5 works, so we omit the details.

Case 16. P = 2F,(q), ¢ = 2°"+1 > 2.
By Table 2 the odd order components of 2Fy(gq) are

E-V2P+q-/2¢+1 and ¢ +2¢ +q+ 20+ 1.

Because of similarity we deal with one of these numbers. Therefore we assume
@ — /26 +q¢—/2¢+1 ==L and ¢ = 22™*! to obtain

(%) om+2(gm — 1)(22m 1 1) = 3(3r~1 — 1).

Since 22™*! 4+ 1 is a multiple of 3, from (%) it follows that m = 2k + 1 must
be an odd number. But £ =0, 1, 2 (mod 3) and considering the remainder of
both sides of () modulo 9 we obtain k =1 (mod 3). If we set kK = 1+ 3!, then
m = 6l + 3.
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If we set l%l = t, then ¢ | |Out(P)|, and ¢ | |H||P| = |G|, from which it

follows:
HH G (g~ 1)(g* + 127 27+ D@+ 1)

(**) 2 p—1

=3 "+ ]I _
Since g = 22m+! = 21247 and by [7] ¢ is a divisor of 12] + 7, we deduce 3 { ¢.
Now we have (¢* — 1)3 = 3, (¢® + 1)3 = 3%, (22™*! 4+ 1); = 3, and by setting
(2™ + 1)3 = 3° we obtain 30" =(s+4) for the order of a Sylow 3-subgroup S of
H. By Lemma 3 we have ¥ | 37" ~(=+9) _ 1 from which it follows that s +4
should be a multiple of p. We set s + 4 = pt for some t € N.

Ift =1, then p = s + 4, and since from (*) we have 37 > 81(2™ + 1), hence
3p~1 = 3* > 2™ + 1 contradicts (2™ + 1)3 = 3°. Therefore we assume t > 1.
Now we set 2™ + 1 = 3°u = 3P*~*u, from which it follows that 2" —1 > 37 -3
which is against (). This final contradiction rules out the possibility of Case
16.

In the final step we must consider simple groups in Table 3 which are not
considered so far. These are 2Ba(q), ¢ = 2*™*! > 2 and Es(q), ¢ = 2, 3
(mod 5) with 4 prime graph components and Eg(q), ¢ =0, 1, 4 (mod 5) with
5 prime graph components. In all of the above cases the odd order component is
a number of the form ¢f(g) + 1, where f is a function of ¢. If ¢f(g) +1 = 32—“1,

(3% —1).

then qf(q) = g’—(?”;;_l—), hence the same consideration as used so far works
to obtain a contradiction. Because of similarity we don’t present the detail.
Finally since we have considered all the simple groups listed in Tables 1, 2 and
3, the main theorem is proved now. O
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