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ON CERTAIN NEW NONLINEAR RETARDED INTEGRAL
INEQUALITIES FOR FUNCTIONS IN TWO VARIABLES
AND THEIR APPLICATIONS

QING-HUA MA aND Josip PECARIC

ABSTRACT. Some new explicit bounds on the solutions to a class of new
nonlinear retarded Volterra-Fredholm type integral inequalities in two
independent variables are established, which can be used as effective tools
in the study of certain integral equations. Some examples of application
are also indicated.

1. Introduction

In the study of ordinary differential equations and integral equations one
often deals with certain integral inequalities. The Gronwall-Bellman inequality
and its various linear and nonlinear generalizations are crucial in the discus-
sion of the existence, uniqueness, continuation, boundedness, oscillation and
stability, and other qualitative properties of solutions of differential and inte-
gral equations. The literature on such inequalities and their applications is
vast; see [1, 2, 12, 20, 24] and the references given therein.

To handle ordinary differential and integral equations with retardation, some
delay Volterra-type integral inequalities are needed. During the past few years,
some investigators have established some useful and interesting delay Volterra-
type integral inequalities in order to achieve various goals; see [3, 5, 10, 11,
13-18, 26] and the references cited therein. Recently, in [25], Pachpatte has es-
tablished the following useful linear Volterra-Fredholm type integral inequality
in two independent variables with retardation:

Theorem 1.1 ([23]). Let u(z,y) € C(A,Ry), a{z,y,s,t), bz,y,s,t) € C{E,
R.) and a(z,y,s,t), blz,y,s,t) be nondecreasing in x and y for each s €
I1,t € Iyya € CY(I1,11),B8 € CYIy,I2) be nondecreasing with a(z) < z on
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L, B(y) <y on Iy and suppose that

u(z,y) <k+/ / a(z,y, s, tyu(s,t)dtds
Cf(l‘o yo)

/ / b(z,y, s, t)u(s, t)dtds
a(zo) JB(yo)

for (z,y) € A, where k > 0 is a constant. If
a( M) a(s) pB(t)
p(z,y) / / b(z,y,s,t) exp / / alz,y, s, t)drzdo | dtds
B(yo) B(yo)

for (:):,y) € A, then

B(y)
u(z,y) < exp / / al{z,y, s,t)dtds
1 .’L‘ y (zo) Y B(wo)

for (z,y) € A, where I = [z9,M],I2 = [yo,N],A = I X I, and E =
{(SL’,y,S,t)EAQICU()SSS{ESM,y()StSySN}-

(1.1)

In this paper, we consider the explicit bounds on some general versions of
(1.1) which the constant k on the right side of (1.1) is replaced by the function
I{z,y) and contain some power nonlinear terms with respect to the unknown
function u(z,y) on the both side of (1.1). Our results can be used as handy
and effective tools in the study of the qualitative behavior of the solutions of
certain retarded Volterra-Fredholm type integral equations. To illustrate this,
some examples of application are given. Our results also generalize some results
in [11].

2. Retarded integral inequalities with power nonlinear

In what follows, R denotes the set of real numbers, R, = [0,+00), Ry =
(0,+00),I1 = [0, M] and I, = [yo, N] are the given subsets of R. Let A =
I x I and

E={(z,y,5t) €A’ 50 <s<z< My <t<y<N}L
C*(M, S) denotes the class of all i-times continuously differentiable functions
defined on set M with range in the set S (¢ = 1,2,...) and C%(M,S) =
C(M,S).

Before giving our main results, we need the following important lemma, in
our proof.

Lemma 2.1 ([10]). Leta > 0,p> g >0 and p # 0. Then
ar < gK%aﬁ- uK%
p D

for any K > 0.
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Theorem 2.1. Let u(z,y) and l{z,y) € C(A,R,), a(z,y,s,t) and b(x,y,s,t)
€ C(E,Ry), alz,y,s,t) and blx,y, s,t) be nondecreasing in © and y for each
se€l,andt € I, a € CYI}, L), 3 € C'(I2,I,) be nondecreasing with
alz) <z onl,By) <y only. Ifu(z,y) satisfies

a(x)
vP(z,y) < l{z,y) / / al(z,y, s, thyul(s, t)dids
B{yo}

(x0)
(2.1) a(M) 3{1\7)
/ / b(z,y, s, t)u"(s, t)dtds
(z0) v 3(yo)

for {x,y) € A, wherep>q>0,p>r >0,p,q and r are constants and

a(M) <N> ep
(22) )&1(3?,2/) / / lL’ Y S, t ‘K'Z:D (57t)exp(Al(37t))dtd8<17

(xo)

for (z,y) € A, then

23 utea) < i+ DEDIBED g 45 )

for (z,y) € & and any K;(z,y) € C(H, Ro)(i = 1,2), where

afz) B3(y) a—p
24 Ay = / / a(z, 5,5, 0K, 7 (s, deds,
3(yo)
{2.5)
" afz) B(y) q 9-p p-q q
A;(w,y) :/ / a(mvyzsvt) l:_Kl ! (87 t)l(svt} + I{lp (57 t)} dtds
a(zo) ¥ B(yo) p p
and
(2.6)
(M) B(N) r o rep .
{z,y) / / b{x,y,s,t) {«KQ P (s, Kr (s,t)] dtds
alzo} v B(yo) p
for (z,y) € A.
Proof. Define a function v(z,y) by
alx)
v(z,y) = / a(z,y,s, tyul(s, t)dtds
(2.7) a{@o} v Blyo)

(M) B(N)
/ / b(z,y,s,tyu" (s, t)dtds
afzo)

u?(z,y) < Uz, y) +o(z,9),

for {z,y) € A, then

or

2.8) u(@,y) < (U(z,y) + v(z,y))>.
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By Lemma 2.1 and (2.8), for any K;(z,y) € C(A, Ro) (i = 1,2), we have
q < 15" pP—4aq,4%
u'(z,y) < (Uz,9)+v(z,y))7 <% (w,y)(l(w7y)+v(:v,y))+-~z;~fﬂ (z,9),
and

I-r
»

W' (,9) < (e, y)+ vz, )5 < EK (2, ) Uz, ) +v(z,)) + L=

r_r
K3 (z,y).

Substituting the last relations into (2.7} we get
(2. 9)

a(w B(y)
/ / a(z,y, s, t) (
a(mo) B(yo)

6(N) r—p bt
/ / b(z,y, s,t) ( K, 7 (s,t)(I{s,t) +v(s,t})) + . K (s,t)) dtds
(z0) /B

{(zo)

K™ (5,05, 1) + v(s, )

| wiy

1% (s, t)) dtds

3 |

< Ay(z,y) + Bi(z,y) / / a(z,y, s, t)K (s,t)u(s, t)dtds
a(zo) 7 B(yo)

(M) [B(N)
/ / b(z,y,s,t) K o (s, t)v(s,t)dtds,
a(zo) JB(ye)
where A (z,y) and By (z,y) are defined as in (2.5) and (2.6) respectively. It is
easy to see that A;(z,y) and C;(z,y) are nonnegative, continuous and nonde-
creasing for (z,y) € A.

From the assumptions, we observe that o'(z) > 0 for z € I. Fixing any
arbitrary (X,Y) € A, then for (z,y) € Ay = [z0, X] X [0, Y], from (2.9) we
have

v(z,y) < 4(X,Y) 4+ C1(X,Y)

g/ / XYstK” s, H(s, t)dtds
(2.10) 2 Jaen 6(% ) (s,t)v(s,t)

/ / b(X,Y,s, t)KF" (s,t)v(s,t)dtds.
Blye}

Define a function w(z,y), (z,y) € A, by the right hand side of (2.10). Then
for (z,y} € Ay, w(z,y) is positive and nondecreasing,

(2.11) v(z,y) < wiz,y),

w(zo,y) = A(X,Y) + C1(X,Y)

(2.12) . ald) (N e
4 = / b(X,Y,s,t) K" (s,t)v(s, t)dtds
B(wo)

D a(wo)
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Fw(w,y) = ~a/(z) a(X,Y,a(z),t) K, 7 (a(z),t)v(a(z),t)dt
z p Blye)

¥) g=p
g0/(3:) ” a(X,Y,a(z),t)K;? (alz), t)w(a(z), t)dt

< Yw(a(z), B)) (=) / a(X,Y, a(z), 0K, (a(), t)dt
p B(yo)
B(y) 9=p
(e, y)el (z) / a(X,Y,a(2), K, 7 (alz), H)dt,

B(yo)

AN
2
5

IN

ie.,

(2.13) & 4 <>/M (X,Y,a(z), K, 7 (alz), H)dt
.1 & “o'(z a(X,Y,a(z), ) K, * (a(z),t)dt.
w(z,y) ~ p B(y0) !

Keeping y fixed in (2.13), setting # = 7 and then integrating from z¢ to z,z €
[0, X] and making the change variable s = a(7T) we get

alz) rBy) g4p
(2.14) w(z,y) < w(zo,y)exp -/ a{X,Y,s, )K" (s,t)dtds |,
D Ja(wo) JB(yo)
where
(2.15)
U)(-’Ko,y)
_ a{M) rB(N} r—p
= A4;(X,Y)+ B;(X,Y) / WX,Y,s,t) K, 7 (s,t)u(s,t)dtds
afwg) ﬁ(sm)
o M) .
A4 (X, Y) + Bi(X,Y) + / b(X,Y,s, t)K,* (s,t)w(s,t)dtds
afze) 7 B(yo)

for (z,y) € &,. Using (2.14) to the right side of (2.15) we have

Iw(x07y) g Al (X7 Y) +BI(X7 Y)
a(M)

r ) r=e
wa)s [ XY 0K, (0%
a(zo) B{¥o)
q as)  pB(1L)
X exp —/ / XYcr,T)K1 (s,t)drdo | ditds.
afzo) 4 B(yo)

Since (X,Y) € A is arbitrary, from (2.11), (2.14) and the last inequality with
X and Y replaced by = and y we have

(2.16) v(z,y) <wlz,y),

a(z) B(y)
(2.17)  w(z,y) < w(zo,y)exp | =

j ot A
alz,y, s, t) K * (s,t)dtds
P Jafao) 4 B(ya)



126 QING-HUA MA AND JOSIP PECARIC

and

w(zo,y) < Ai1(z,y) + Bi(z,y)
p (M) pBIN) s
w(zo, )" / / bz, 5, 0K, " (s,1)
PJa B(yo)

{zo)

q a(s) a-p
X exp —/ / a(s,t,0,7)K,* (o,7)drdo | dtds
P Ja(zo) JB8(v0)

for(z,y) € A. Now in view of (2.2), (2.4) and the last inequality we have
Ai(z,y) + Bi(z,y)

2.18 w(zg,y) <

(2.18) (w0,9) < 1= i(z,y)

Using (2.18) in (2.17) and combining with (2.16) and (2.8) we get the desired
inequality in (2.3). O

When p=2,¢=r =1in Theorem 2.1 we get a Volterra-Fredholm-Ou-Iang
type inequality in two variables as following. About Ou-lang type inequality
and its generalizations and applications, one can see [22-24].

Corollary 2.2. Let u(z,y),a(z,y,s,t),b(z,y, s,t),a(z) and B(y) be defined as
in Theorem 2.1. If u(z,y) satisfies

a(z) rB(y)
u?(z,y) < l(z,y) / / a{z,y, s, t)u(s, t)dtds
B

20) (%o)

(2.19) )
+ / / b(z,y; s, t)u(s,t)dtds
a(zo) JB(yo)

for (z,y) € A, where
(2.20)

6(N)
Az, y) / / b(z,y,s,t) K, (s t) exp(Ai; (s, t))dtds < 1
a(zo) B(yo)

for (z,y) € A, then

A (2.9) + Bu(2,9) :
. <
e2) )< [iley) + REDEIED) o (4,5,)
for (z,y) € A and any K;(z,y) > 0(i = 1,2), where
B(v)

(2.22) Ari(z,y) / / a(z,y, s, t)K (s,t)dtds,

(zo) ¥ B(yo)
(2.23)

Ki(s,t)| dids

N |

) a(e) () 1 .
A11($,'y) :/ / a(x,y,s,t) ,:—Kl 2(37t)l(3at) +
a(zo) v B(yo) 2
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and
(2.24)
a(M) B(N) 1 1
By (z,y) :/ / b(z,y,s,t) [ K, 2(s,t)l(s,t) + =K (s,t)| dtds
a(zo) J8(w0) 2 2
for (z,) € A,

When p = ¢ = n = 1 we get an interesting result as follows

Corollary 2.3. Let u(z,y),a(z,y,s,t),b(z,y,s,t),a(z) and B(y) be defined as
in Theorem 2.1. If u(x,y) satisfies

alr)
u(z,y) < l(z,y) + / / a{z,y, s, tyu(s, t)dtds
B(yo)

o M)
/ / b(z,y, s, t)u(s, t)dtds
(o) VB (vo)

B(N)
(2.26) Az2(z,y) / / b(z,y,s,t)exp(Ar2(s,t))dtds < 1,
a(zg)

(2.25)

for (z,y) € A, where

for (z,y) € A, then
Aia(z,y) + Bia(z,y)

2.2 < A
( 7) u($7y) = l(m7y)+ 1—)\12(1«',3}) eXp( 12(‘773:'/))
for (z,y) € A, where

a(z) rB(y)
(228) Al'Z(z’y) = / / a(m, y,S,t)dtdSa
z0) v B(yo
_ a(z) rB(y)

(2.29) Aya(z,y) :/ / a(z,y, s, t)(s,t)dtds

a(zo) v B(yo)
and
a(M) pB(N)

(2.30) Bia(z,y) / / b(z,y, s, t)l(s,t)dtds
(z0) Y B(yo)

for (z,y) € A.

Remark 2.1. (i) When I(z,y) = k > 0 (k is a constant), the inequality (2.25)
has been studied in Theorem 1.1, but in this special case, under same conditions
as in Theorem 1.1, a new estimate to the solution of (2.25) is established in
(2.27), which is incomparable with the result given in Theorem 1.1.

(ii) Using the similar procedures of proof of Theorem 2.1, we can get a more
general result as following.
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Theorem 2.4. Letu(z,y) andl(z,y) € C(A, Ry),a:(x,y,s,t) and bj(z,y, s,t)
€ C(E,Ry),ai(x,y,s,t) and bj(z,y, s, t) be nondecreasing in x and y for each
sel, andt € I, 014,005 € CY(I1, 1), 11, Boj € C(I2,I2) be mondecreasing
with ali(w)vali(x) S T on Il)ﬁli(y)HBQj(y) S Yy on 1257: = 1a2a"'7m17 ] =

1,2,...,my (mq and my are some positive integers). If u(z,y) satisfies
alz Blt(y
uP(z,y) < l(z,y) / / (z,y, s, t)u¥ (s, t)dtds
a1i(zo) 4B
(2.31) az](M) 52;(1\’)
/ (z,y,s,t)u" (s, t)dtds
az;(xo) ﬁzg(yo)

for (z,y) € A, where p 2 g > 0,p>1; >0,p,¢:, 75 and n; are constants, and
(2.32)

oz (M) 52](1\7 =P
Xo(z,y) = [ bias 0K, (s,t)explia(s,)deds < 1,
042:(100) ﬂ21(yo)
for (z,y) € A, then
- 1
AZ(may)_*_BZ(m;y) ®
2. <
23 ue) < i)+ EDTRED o (40,

for (z,y) € A and Ki;(s,t),Ka(s,t) € C(A,Rp), i = 1,2,...,my; j =
1,2,...,mz, where

alt(:t ﬁlz q—p
(2.34) As(z,y) Z ql/ / ai(z,y,s, ) K7 (s,t)dtds,
Bii

a1i(zo)

(2.35)
A2 (.’L', y)

my a1i(z) pBri(y) g uE P
= Z/ ( )/ ( ) («/L' Y, 8, t) lpKllp (87 t)l(s,t) + p KII: (37 t):| dtds
=1 Y @1ilZo 1i (Yo

and
(2.36)
32 (z,y)

az; (M BZJ(N) —P p—ry T3
/ / (z,y,s,t) [ ]KQJ” (s,t)l(s,t) + ——JK;]’- (s,t)] dtds
j=1v92 ) B p

2] yO
for (z,y) € A.

Remark 2.2. (i) When m; = 2,p = 1 = ¢ = 1,a1(z,y,8,t) = a(s,t),
a2(wayas7t) = b(s:t)aall(z) = maﬁll(y) = yabj(mayvsat) =0, =12,...,maq,
from Theorem 2.4 we can get Theorem 3.1 given in [11]; (ii))When m, = 2,p >
17q1 =42 = 1:a1($7yasat) = a(s,t),az(w,y,s,t) = b(S’t)ﬁall(m) = maﬁll(y) =
y,bi(z,y,8,t) = 0,7 =1,2,...,mg, from Theorem 2.4 (let K17 = K12 = l(z,y))
we can get Theorem 3.2 given in [11].
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Theorem 2.5. Let u(z,y),l(z,y),a(z,y,s,t),b(z,y, s,t),a(z) and B(y) be de-
fined as in Theorem 2.1. If u(z y) satisfies

alz)  rB(y)
uP(x,y) < l{z,y) / / a(z,y, s, t)ul(s,t)dids
afzo) ¥ B(yo)

(2.37) B(N)
/ / b(z,y,s,t)V (s, t,u(s,t))dtds
a(zo) J3(vo)

for (z,y) € A, wherep>q>0,p>7r>0,p>n>0,p,q and v are constants,
U,V € C(R%,R;) satisfying

(2.38) 0<V(s,t,z) = Vs, t,y) <U(s,t,y)(z — ),
and

(2.39)

Aa(z,y)
0 s p—1
/ / b(x,y,s,t)U <s t,— + l(s t)) exp(4; (s, t))dtds < 1
B(yo) p
then
fil ($7y) +V %
. < _—
210 ol < o)+ TED Y exp (s av0)

for (z,y) € A and any K(z,y) € C(A,Ry), where Ai(zx,y) and A;(z,y) are
defined as in (2.4) and (2.5), respectwely, and

a(M) -1
(2.41) / / ( t,— + —l(s t)) dtds.
a(zo) JB(yo) p
Proof. Define a function 4(z,y) by
afz)
(z,y) = / / a(z,y, s, t)ul(s,t)dtds
a(zo) v B(yo)
a(M) pB(N)
/ / blz,y,s,t)V (s, t,u(s,t))dtds.

B(ya)

(2.42)

Then we have
w(z,y) < l(z,y) + 0(z,y)
or )
u(z,y) < (l(z,y) + v(z,y)7.
By Lemma 2.1, for any K;(z,y) € C(A, Ry), we have

(@) < () + 0z, 0)F < (Ua,y)+ o(a,0) + 2=,

and
ui(z,y) < ((t) +0(z,y))* < 1K, 7 (z,y)((z,y) + 0(z,y)) + TKl (z,y)-

’E
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Substituting the last relations into(2.42)and using (2.38), we find that
(2. 43)

a(z) & g ez p—g 2
/ a(z,y,s,t) ( K" (s,t)(I(s,t) + (s, t)) + —K7 (s,t)) dtds
a(zoy B(yo) D p
a(M) -
+/ / |4 (s,t, p-1 + l(l(s,t) + ﬁ(s,t))) dids
a(zo) ﬂ(yo) p

Ot(M _ 1 1
/ ( — + —l(s,t)) dtds

a(zg) ﬁ(yo) b D

OL(M . 1 1
+/ / ( — + —l(s,t)) dtds

a(zo) v B(yo) p p

- _ aflz) pB(y) =
<Az, y)+V+ —/ / a(z,y,s,t) K, * (s,t)0(s,t)dtds
a(wo) B(yo)

a(M)
/ / b(z,y,s,t) U( t, p-1 + 1l(s t)) o(s, t)dtds,
(zo) Y B(yo) p

where V is defined in (2.41). Obviously, 4;(z,y) + V are nonnegative, contin-
uous and nondecreasing for (z,y) € A. Taking similar procedure from (2.9) to
(2.18) in the proof of Theorem 2.1 to (2.43), we can get the desired inequality
(2.40). O

Remark 2.3. Asin Theorem 2.4, using similar arguments in the proof of Theo-
rem 2.5, we can get a more general version of (2.37), but, for space-saving, the
details are omitted here.

3. Applications

Consider retarded Volterra-Fredholm integral equations in two independent
variables of the form

Tz py

P(z,y) = fla,y) + / F(z,, 8,1, 2(s — ha(s), £ — ha(t))dtds

(3.1) woon

+/ G(z,y,s,t,2(s — hi(s),t — ha(t))dtds,
Yo

where z, f € C(A,R),F,G € C(EXR,R) and hy € C(I1, Ry ), he € C(I2,R4),
are nonincreasing,  — hy(z) > 0,y — ha(y) > 0,z — hi(z) € C*(I1, L),y —
ha(y) € C' (I3, I2), by (z) < 1,h5(y) < 1,h(zo) = ha(yo) = 0,p > 1 is a con-
stant.

Theorem 3.1. Assume that the functions F' and G in (3.1) satisfy the condi-
tions

(3'2) |F($’y’ Sﬂt7 z)i S a(:E’y’ s’t)|z|q7
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and
(3.3) |G(z,y,5,t,2)| < b(z,y,s,t)|z|",

where a(z,y,s,t),b(z,y,s,t) are as in Theorem 2.1, q and r satisfying 0 < q <
p,0 < r <p are constants. Let

1 1
4 M, = —_— M. —_—
(34) LR 1-h () T R T Ry (y)

U’(N r—p
/ / b(z,y,8, )K" (s,t)
¢(zo) J¥(yo)

o(s)
X exp (/ / a(s,t, o, T)deU) dtds < 1,
#(zo) J¥(yo)

where ¢(x) =z — h1(z),z € I1,¥(y) =y — ha(v),y € I and
a(z,y,0,7) = My Maa(z,y,0 + hi(8), 7 + ha(t)),
b(z,y,0,7) = My Msb(z,y,0 + hi(s), T + ha(t)).
If z(z,y) is any solution of (3.1)-(3.3), then

66 @)l < |fe)+ TEDEIOD o 46 )

for (z,y) € A and any K;(z,y) € C'(A Ry) (i =1,2), where

and

(3.5)

=

Yly a=p
(3.7) Al(z,y) / / a(z,y,s, )K" (s,t)dtds,

Len=[ [ ate s [%K;“ (5,01fs, )] + L2k 5,0 s
Yo J

and
(3.9)

* ¢(@) T r_ St b—r z ]
Bi(z,y) = / / Bz, v, s,1) [—Kz" (5,8)1£(s,8)] + E=LKF (5,1)] dtds
o(zo) Y% (yo) p b J

for (z,y) € A.

Proof. Let z(z,y) be a solution of (3.1). Using conditions (3.2) and (3.3) in
(3.1), we have

@)l < [f@)l+ | ’ / .y, 5, 0)[2(s — ha(s), b - ho(8))|*dtds

(3.10) M N
+/ / b(z,y,s,t)|z(s — hi(s),t — ho(t))|"dtds.
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Now, by making the change of variables on the right side of (3.10), we have

¢(z)
(2, 9)] < |f(@9)] + / / a(e,y,,7)|x(0, 7)1 drdo
(3'11) olzo) Y {yo)

o(M) w(m
+/ b(z,y,0,7)|2{0, T)|"drdo.
¢(za) v (yo)

Now a suitable application of the inequality given in Theorem 2.1 to (3.11)
yields (3.6). The right-hand side of {3.6) give us the bound on the solution
z(z,y) of (3.1) in terms of the known functions. O

Theorem 3.2. Assume that the functions F' and G in (3.1) satisfy the condi-
tions

(3'12) IF(w’y’ s7t7 z) - F(:E7 y7 S’ tY 2)‘ S a(x’ y’ S? t)lzp - Zpi’
(3.13) |G(2,y,8,t,2) — G(z,y,s,t,2)] < b(z,y,s,t)|2P — 27|,
and

B (M) pB(N)

Az, y) = / / b(z,y, s,t) exp(A] (s, t))dtds < 1,
alzo) JB(yo)

where

(z) pB(y)
(3.14) Al(z,y) = / / a{z,y, s, t)dtds,
{z0) /B(yo)

functions a(z,y,s,t) and b(z,y,s,t) are as in Theorem 2.1. Let My, Mz, ¢,
¥, a, b and p be as in Theorem 3.1. Then the equation (3.1) has at most one
solution on A.

Proof. Let z(z,y) and Z(z, y) be two solutions of {3.1) on A. Then using (3.12)
and (3.13) in (3.1) we have

|2 (z,y) — 2 (z,y)]

/i/ a(x,y, s, t)|z (s — hi(s),t — ho(t)) — 27 (s — ha(s), t — ha(t))|dtds

N
+ / / b(x,y, s, t)12P(s — hi(s),t — ha(t)) — 2P (s — ha(s),t — ha(t))|dtds.
zo v Yo
Making changes of variables to the right side of the last inequality, we have

¥(v)
|22 (z,y) — 2% (2,9)| < / ilz,y, s,t)[2(0,7) — 2P (0, 7)|dtds
¢(wo ¥{yo)

/ / ) b(z,y, s,t)|2" (0, T) — 2P(0, T)|dtds.

Now a suitable application of the inequality given in Corollary 2.3 to the last
inequalities yields
1Zp(x7 ?}) - zp(x,y” < 0
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for (z,y) € A. Hence z = Z on A, 0

Finally, we investigate the continuous dependence of the solutions of (3.1)
on the functions f, F and G. For this we consider the following variation of
(3.1):

Zp(l'ay) = f(xay) + /x /yF(x7 y,s,t,z(s - hl(s):t - h2(t))dtds

3.1
/ / (x,y,8,t,2(s — hi(s),t — ha(t))dtds

for (z,y) € A,z,f € C(A,R),F,G € C(E x R,R),p,h; and hy are as in
Theorem 3.1.

Theorem 3.3. Consider (3.1) and (3.1). If

i
¥ |F(z,y,s,t,21) — F(2,y,s,t,22)| <alz,y,s,t)|z] — 25|
and
|G(z,y,5s,t,21) — G(z,y,s,t,22)] < b(z,y,s,t)|2] — 28|;
(ii)
F(,9) = Faw)| < 5
(ii)

_ o BIN) _
Ae(z,y) = /( / b(z,y, s, t) exp(A] (s, t))dtds < 1;
a(zo) yo)

(iv) for all solutions z of (3.1),

L:A:F(%%*“E“"hdﬂJ—hxm)

-f(a%aaz@-h4$t—mu»)pm35§
and
G(.’I),y,S,t,E(S”‘hl(S),t—hg(t )
—@(x,y,s,t,?(s—hl(s),t—hg(t))>‘dtd Sg

for all (z,y) € A and z1,29 € R, where € > 0 is an arbitrary constant, then

A3(z,y) + Bi(w,y) .
DL PO p (410,0)

(3.15) VWam—?uwns€P+

for (z,y) € A, where

(3.16) Al (z,y) = Ai(z,y) / / a(z,y, s, t)dtds,
¢(zo) /¥ (yo)
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and
(=) ¢(y)

(3.17) B3 (z,y) / / b(z,y, s, t)dtds
#(zo) v ¥(yo)

for (z,y) € A.

Proof. Let z(z,y) and Z be the solutions of (3.1) and (3.1). Hence

|Zp($,y) - Zp(x,y)l

< If(way)‘f("”’y)“r/m:/y:

M /N
)
Zo Yo
- a(a:,y,s,t,f(s — hi1(8),t — ha(t)) ) ’dtds

z pry
oL
3 o Yo

- F<m,y, s,t,Z(s— hi(s),t — hg(t))) idtds

F (5,120 = e - a0)

- F(z,y, 5,8, Z(s — hy(s),t — ha(t)) ) Idtds

G(w,y,s,t,z(s — hi(s),t - hz(t))>

F(x,y, s, t,z(s — hy(s),t — h2(t)))

Flz,y,s,t,2(s — hy(s),t — hg(t)))

- F(m,y,s,t,z(s — hi(s),t — ha(t)) ) ‘dtds

+/w:4/yiv G(m,y,s,t,z(s—h1(8),t—hz(t))>

- G<af:,y, s,t,Z(s — hi(s),t — hg(t))) dtds

M N
+/ / G(my,stz(s—hl ),t — ha(t
zo Yo

—G(:v Y,8,t,Z (8 — hi(s), t—h2())) dtds

T ry

T Yo

M N
+/ / b(z,y,5,1)

o Y Yo

2P (s — h1(8),t — ha(t)) — 2P(s — hi(s),t — hz(t))‘dtds

2P (s — h1(s),t — ha(t)) — 2P(s — hi(s),t — hg(t))‘dtds
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by the assumptions (i)-(iv). Now by making the change of variables on the
right side of the last inequality we have
(3.17)
é(x)
|2P(z,y) — 2% (z,y)| < € +/
@

¥(y)
/ a(z,y,0,7)|2F (0,7) — (0, 7)|dTdo
(z0) Y (yo)

S(M) pu(N)
+/ / b(z,y,0,7)|2"(0,7) — 2P (0, T)|dTdo
b(zo) Ju

o) < ¥(yo)

for (z,y) € A. A suitable application of Corollary 2.3 to (3.17) yields the
desired estimate in (3.15). Evidently, if function

A3(z,y) + B3 (2,y)
1~ /\2('T7 y)

exp (47 (z,y))

is bounded on A, so
|2 (z,y) — 2P (z,y)| < eK

for some K > 0 and (z,y) € A. Hence zP depends continuously on f, " and
G. O
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