폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해반응에서 칼슘계 촉매의 영향

The Effects of Calcium-type Catalysts on the Pyrolysis Reaction of Raw Material Resin for Producing from Waste Vinyl to Fuel-oil

  • 박영철 (경상대학교 생명화학공학과/공학연구원) ;
  • 최주홍 (경상대학교 생명화학공학과/공학연구원) ;
  • 조태호 (경상대학교 생명화학공학과/공학연구원)
  • Bak, Young-Cheol (Department of Chemical & Biological Engineering/Engineering Research Institute, Gyeongsang National University) ;
  • Choi, Joo-Hong (Department of Chemical & Biological Engineering/Engineering Research Institute, Gyeongsang National University) ;
  • Cho, Tae-Ho (Department of Chemical & Biological Engineering/Engineering Research Institute, Gyeongsang National University)
  • 발행 : 2008.02.29

초록

폐 농업용 비닐을 이용한 연료유 생산 공정을 위한 저밀도폴리에틸렌(LDPE)과 에틸렌비닐아세테이트(EVA) 수지에 대한 열분해 반응 실험을 하였다. 질소 분위기에서 상온에서 $650^{\circ}C$까지의 비등온 조건에서의 열분석기(열중량분석기, 시차주사열량계)와 $420^{\circ}C$의 배치형 반응기에서 무촉매반응과 소성 백운석,소성 석회석, 소성 굴껍질 등의 칼슘계 촉매를 사용한 열분해가 행하여졌다. TGA 실험에서 가열속도에 따라서 LDPE의 열분해 개시온도는 $330{\sim}360^{\circ}C$로 변화되었다. EVA 수지는 $300{\sim}400^{\circ}C$의 1차분해영역과 $425{\sim}525^{\circ}C$의 2차분해 영역에서 열분해 되었다. LDPE 수지에 10% 칼슘계 촉매 첨가 시 소성백운석 첨가가 반응 속도를 증가시켰다. EVA 수지 열분해 실험에서는 칼슘계 촉매 첨가가 열분해 반응을 다소 지연시켰다. DSC 실험에서 칼슘계 촉매는 LDPE 수지 원료의 융해개시온도는 다소 낮추었지만 융해열에 대하여는 영향이 없었다. 소성백운석 첨가 시 열분해열을 20% 정도 감소시켰다. 회분식 반응기에서 소성백운석과 소성 석회석 첨가 시 연료유 생성 수율을 높였으나, 생성 연료유 내의 탄소 수 분포에는 큰 영향이 없었다.

The effects of calcium type catalysts addition on the thermal decomposition of low density polyethylene (LDPE) and ethylene vinyl acetate (EVA) resin have been studied in a thermal analyze. (TGA, DSC) and a small batch reactor. The calcium type catalysts tested were calcinated dolomite, lime, and calcinated oyster shell. As the results of TGA experiments, pyrolysis starting temperature for LDPE varied in the range of $330{\sim}360^{\circ}C$ according to heating rate, but EVA resin had the 1st pyrolysis temperature range of $300{\sim}400^{\circ}C$ and the 2nd pyrolysis temperature range of $425{\sim}525^{\circ}C$. The calcinated dolomite enhanced the pyrolysis rate in LDPE pyrolysis reaction, while the calcium type catalysts reduced the pyrolysis rate in EVA pyrolysis reaction. In the DSC experiments, addition of calcium type catalysts reduced the melting point, but did not affect to the heat of fusin. Calcinated dolomite reduced 20% of the heat of pyrolysis reaction. In the batch system experiments, the mixing of calcinated dolomite and lime enhanced the yield of fuel oil, but did not affect to the distribution of carbon numbers.

키워드

참고문헌

  1. Park, J.J.; Park, K.; Park, J.W.; Kim, D.C. "Characteristics of LDPE Pyrolysis", Korean J.Chem. Eng., 2002, 19(4), 658 https://doi.org/10.1007/BF02699313
  2. Jang, N.P.; Park, J.W.; Seo, G. "Liquid-phase Degradation of Waste Agricultural Film over Used- FCC Catalyst", HWAHAK KONGHAK, 2003, 41(6), 694
  3. Seo, G. "FCC 공정 폐촉매로부터 폐고분자 물질의 액상 분해용 촉매의 제조방법과 이 촉매를 이용한 폐고분자 물질의 분해 특성", 2003, 공개특허 특2003- 0035638
  4. Seo, G. "폐고분자 물질의 액상 분해용 촉매의 제조 방법 및 이를 이용한 분해 방법", 2002, 공개특허 특 2002-0046027
  5. Park, D.W. 폐플라스틱 분해용 촉매 및 이 촉매를 이용한 폐플라스틱의 분해 반응", 2000, 공개특허 특 2000-0043100
  6. Lee, K.H.; Shin, D.H. Influence of Plastic Type and Pyrolysis of Waste Thermoplastics into Oil Recovery, J. Korea Society of Waste Management, 2004, 21(6), 646
  7. Kim, D.C.; Woo, J.K. Effect of Thermal and Catalytic Decomposition Condition on Decomposition Lapse Time and Oil Quality in Plastic Wastes into Fuel Oil, J. of KSEE, 2004, 26(11), 1232
  8. Marcilla, A.; Beltran, M.; Conesa, J.A. Catalyst Addition in Polyethylene Pyrolysis Thermogravimetric Study, Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 117 https://doi.org/10.1016/S0165-2370(00)00162-5
  9. Marcilla, A.; Gomez, A.; Menargues, S. TGA/FTIR Study of the Evolution of the Gases Evolved in the Catalytic Pyrolysis of Ethylene-vinyl Acetate Copolymers. Comparison among Different Catalysts, Polymer Degradation and Stability, 2005, 89, 454 https://doi.org/10.1016/j.polymdegradstab.2005.01.024
  10. Kim, D.C.; Woo, J.K.; Nho, N.S. Evaluation of Oil Qulity in Thermal and Catalytic Decomposition of Waste Plastics into Fuel Oil, 한국폐기물학회지, 2005, 22(8), 765
  11. Sakata, Y.; Uddin, M.A.; Muto, A. Degradation of Polyethylene and Polypropylene into Fuel Oil by using Solid Acid and Non-acid Catalysts, Journal of Analytical and Applied Pyrolysis, 1999, 51, 135 https://doi.org/10.1016/S0165-2370(99)00013-3
  12. Uddin, M.A.; Koizumi, K.; Murata, K.; Sakata, Y. Thermal and Catalytic Degradation of Structually Different Types of Polyethylene into Fuel Oil, Polymer Degradation and Stability, 1997, 56, 37 https://doi.org/10.1016/S0141-3910(96)00191-7
  13. Onu, P.; Vasile, C.; Ciocilten, S.; Iojoju, E.; Darie, H. Thermal and Catalytic Decomposition of Polyethylene and Polypropylene, Journal of Analytical and Applied Pyrolysis, 1999, 49, 145 https://doi.org/10.1016/S0165-2370(98)00109-0
  14. Serrano, D.P.; Aguado, J.; Escola, J.M.; Garagorri, E.; Rodriguez, J.M.; Morselli, L.; Palazzi, G.; Orsi, R. "Feedstock Recycling of Agriculture Plastic Film Wasted by Catalytic Cracking", Applied Catalysis, B Environmental, 2004, 49, 257 https://doi.org/10.1016/j.apcatb.2003.12.014
  15. Manos, G.; Yusof, I.Y.; Papayannakos, N.; Gangas, N.H. "Catalytic Cracking of Polyethylene over Clay Catalysts. Comparison with an Ultrastable Y Zeolite", Ind. Eng. Chem. Res., 2001, 40, 2220 https://doi.org/10.1021/ie001048o
  16. Gobin, K.; Manos, G. "Polymer Degradation to Fuels over Microporous Catalysts as a Novel Tertiary Plastic Recycling Method", Polymer Degradation and Stability, 2004, 83, 267 https://doi.org/10.1016/S0141-3910(03)00272-6