난방운전 조건하에서 $CO_2$ 열펌프용 내부 열교환기의 열전달 특성에 대한 연구

Study on Heat Transfer Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Heating Operating Condition

  • 발행 : 2008.06.30

초록

본 연구에서는 $CO_2$ 열펌프에 사용되는 내부 열교환기를 난방조건에서 운전할 경우, 실험 및 수치적 방법으로 열전달량, 효율, 압력강하 등을 관찰하였다. 4가지 종류의 내부 열교환기를 사용하였다. 수치 해석은 단면분할법과 하디크로스 방법을 이용하여 유량, 길이, 운전조건, 내부 열교환기 종류에 따른 영향을 분석하고 실험을 통해 확인하였다. 유량이 증가함에 따라 열전달량이 약 25% 향상되었다. 마이크로 채널이 동심관에 비해 열전달량이 약 100% 크게 나타났다. 길이가 증가함에 따라 열전달 증가율은 감소하였다. 압력강하는 고압측에 비해 저압측이 크게 나타났으며, 동심관에 비해 마이크로 채널이 약 100% 크게 나타났다. 고온입구조건이 증가할수록, 저온입구조건이 감소할수록 열전달량은 약 3% 증가하였다. $CO_2$의 열전달 계산의 정확성을 위해 $CO_2$의 특성과 관형상을 고려할 수 있는 열전달 상관식의 개발이 필요하다.

In order to study the heat transfer, effectiveness and pressure drop of an internal heat exchanger (IHX) for $CO_2$, heat pump under heating condition, the experiment and numerical analysis were performed. Four kinds of IHXs were used. The section-by-section method and Hardy-Cross method were used for the numerical analysis. The effects of IHX on the flow rate of refrigerant, the IHX length, the operating condition of a gas-cooler and an evaporator and the type of IHXs were investigated. With increasing the flow rate, the heat transfer rate increased about 25%. The heat transfer of the micro-channel tube was larger about 100% than that of the coaxial tube. With increasing the IHX length, the heat transfer rate decreased. The low-side pressure drop was larger compared with that of the high-side. And the pressure drop of the microchannel tube was larger about 100% than that of the coaxial tube. With increasing the high-side temperature and decreasing the low-side temperature, the heat transfer rate increased about 3%. From this study, we can see that new correlation on $CO_2$ heat transfer characteristics and tube type is necessary.

키워드

참고문헌

  1. Bullock, C. Theoretical performance of CO$_2$ in subcritical and transcritical cycles, ASHRAE/NIST Conference Refrigerants, Maryland, USA, 1997, 6-19
  2. Rozhentsev, A.; Wang, C. Some design features of a CO$_2$ air conditioner, Applied thermal Engineering, 2001, 21, 871-880 https://doi.org/10.1016/S1359-4311(00)00087-9
  3. Park, B.K.; Kim, G.O.; Kim, M.G. Thermal performance analysis of circular coil type IHX for transcritical CO$_2$ system, Korean Journal of Air-Conditioning and Refrigeration Engineering, 2002, 14(7), 531-542
  4. Cho, H.H. Study on the performance improvement of a transcritical CO$_2$ heatpump. Ph.D. Thesis, Korea University, Seoul, Korea, 2005
  5. Jonas, M.K. Dake. Essentials of Engineering hydraulics, 2nd ed., Macmillan Press, 1983, 87-94
  6. Dittus, F.W.; Boelter, L.M.K. Heat transfer automobile radiators of the turbular type, Publications in Engineering, 1930, 2, 443
  7. Gnielinski, V. New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem., 1976, 16, 359-368
  8. Incorpera, F.P.; Dewitt, D.P. Fundamental of Heat and Mass Transfer, 4th ed., John Willy & Sons, 1996, 424
  9. Fang, X.; Bullard, C.W.; Hrnjak, P.S. Heat transfer and pressure drop of gas cooler, ASHRAE transaction Part I, 2001, 255-267
  10. Lee, J.H.; Bae, S.W.; Bang, K.H.; Kim, M.H. Experimental and numerical research on condenser performance for R22 and R407C refrigerants, International J. of Refrigeration, 2002, 25, 372-382 https://doi.org/10.1016/S0140-7007(01)00012-3