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ON THE COMPLETE CONVERGENCE FOR WEIGHTED
SUMS OF DEPENDENT RANDOM VARIABLES UNDER
CONDITION OF WEIGHTED INTEGRABILITY

JonG-IL BAeEk, Mi-Hwa Ko, AND TAE-SUNG KM

ABSTRACT. Under the condition of h-integrability and appropriate con-
ditions on the array of weights, we establish complete convergence and
strong law of large numbers for weighted sums of an array of dependent
random variables.

1. Introduction

Complete convergence and strong law of large numbers for sequences of ran-
dom variables play a central role in the area of limit theorems in probability
theory and mathematical statistics. Conditions of independence and identical
distribution of random variables are basic in historic results due to Bernoulli,
Borel or Kolmogorov. Since then, serious attempts have been made to relax
these strong conditions. For example, independence has been relaxed to pair-
wise independence or pairwise negative quadrant dependence or, even replaced
by conditions of dependence such as mixing or martingale. In order to relax the
identical distribution, several other conditions have been considered, such as
stochastic domination by an integrable random variable. The classical notion of
uniform integrability of a sequence {X,,n > 1} of integrable random variables
is defined through the condition lim, o sup,>, E|Xp|I(X,| > @) = 0. Lan-
ders and Rogge [6] prove that the uniform integrability condition is sufficient
in order that a sequence of pairwise independent random variables verifies the
law of large numbers. Chandra [2] introduces a new condition which is weaker
than uniform integrability : the condition of Cesaro uniform integrability. A
sequence {X,,n > 1} of integrable random variables is said to be Ceséaro uni-
formly integrable if lim, o0 SUP, >y L 3/ E|Xi|I(Xk| > a) = 0.

Ordénez Cabrera [9] introduces the condition of uniform integrability con-
cerning the weights, which is weaker than uniform integrability, and leads to
Cesaro uniform integrability as a special case.
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Definition 1.1 ([9, Ordénez Cabrera]). Let {Xni,1 < k < n,n > 1} be an
array of random variables and {ank,1 < k < n,n > 1} an array of constants
with °7_, |ank] < C for all n > 1 and some constant ¢ > 0. The array
{Xnk,1 <k <n,n > 1} is {ank }-uniformly integrable if

all)rgoig; |@nk| B\ X np | I(| Xnk| > @) = 0.

Under the condition of {an}-uniform integrability, Ordénez Cabrera [9]
obtains law of large numbers for weighted sums of pairwise independent random
variables; the condition of pairwise independence can be even dropped, at the
price of slightly strengthening the conditions on the weights.

Ordénez Cabrera and Volodin [10] introduce the notion of h-integrability
for an array of random variables concerning an array of constant weights and
prove that this concept is weaker than Cesaro uniform integrability and {ans }-
uniform integrability.

Definition 1.2 ([10, Ordéiiez Cabrera and Volodin]). Let {Xni,1 < k <
n,n > 1} be an array of random variables and {ank,1 < k < n,n > 1} an
array of constants with Y .p_, |ank] < C for all n > 1 and some constant
C > 0. Let moreover {h(n),n > 1} be an nondecreasing sequence of positive
constants with h(n) 1 0o as n — co. The array {X,x} is said to be h-integrable
with respect to the array of constants {ans} if the conditions hold:

sng |ank|E | Xnk| < 00 and lim > |ank B | Xkl I [|Xni| > h(n)] = 0.

"2 k=1 k=1

Under appropriate conditions on the weights and h-integrability concerning
the weights we will derive complete convergence and strong law of large numbers
for weighted sums of an array of random variables, when these random variables
are subject to some special kind of rowwise dependence: asymptotically almost
negative association, pairwise negative quadrant dependence and y-mixing.

2. Statements of results

In this section we obtain some complete convergence and strong law of large
numbers for weighted sums of array of h-integrable random variables under
some conditions of dependence. Namely, we consider the following rowwise
dependence structures for an array: asymptotically almost negative association
(AANA), pairwise negative quadrant dependence (NQD) and ¢-mixing.

2.1. AANA random variables

In the first theorem of this sub-section, we are going to show that, for an
array of rowwise asymptotically almost negatively associated random variables,
a certain technique of truncation which preserves the dependence can be used
to obtain a complete convergence and a strong law of large numbers for the
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weighted sums under the condition of h-integrability concerning the array of
constants {ank }.

Recall that a finite family {X;,...,X,} is sald to be negatively associ-
ated(NA) if for any disjoint subsets A,B C {1,...,n} and any real coordi-
natewise nondecreasing functions f on R4, g on RE,

Cov(f(X;,i € A),g9(X;,j € B)) <0

and that an infinite family of random variables is NA if every finite subfamily
is NA. This concept was introduced by Joag-Dev and Proschan [4].

By inspecting the proof of Matula’s [8] maximal inequality, we see that
one can also allow positive correlations provided they are small. Primarily
motivated by this, we introduce the following dependence condition :

Definition 2.1 ([3, Chandra and Ghosal]). A sequence {X,,n > 1} of random
variables is said to be asymptotically almost negative associated (AANA) if
there exists a nonnegative sequence g(m) — 0 such that

2.1.1) Cov(f (Xm)s §(Xmit-- - » Xmi)
< q(m)(Var(F(Xm))Var(g(Xomi1, - - » Xmir))) ?

for all k,m > 1 and for all coordinatewise increasing continuous functions f
and g whenever the righthand side of (2.1.1) is finite.

Remark. The family of AANA sequences contains NA (in particular, indepen-
dent) sequences and some more sequences of random variables which are not
much deviated from being negatively associated.

The following lemma gives a certain technique of truncation that preserves
the dependence property.

Lemma 2.2 ([5, Kim, Ko, and Lee]). Let {X,,n > 1} be a sequence of AANA
random variables. Then, for any sequences {an,n > 1} and {b,,n > 1} of
constants such that a, < by for all m > 1, the sequence {Y,,n > 1} is still a
sequence of AANA random variables, where

(21.2)  Yo=XoI[an < Xn < bp]+an I [Xn < @]+ bp I [ X0 > bl

Lemma 2.3 ([3, Chandra and Ghosal]). Let {X,,n > 1} be a sequence of
mean zero, square integrable random variables such that (2.1.1) holds for 1 <
m < k+m <n and for all coordinatewise nondecreasing continuous functions
f and g whenever the righthand side of (2.1.1) is finite. Let A2 = 3., ¢*(m)
and 0,2 = EXi%, k> 1. Then, for e > 0,

n

k 12
(2.1.3) P{ max | Y Xi|>e} <27 A+ (1+A4%)7) D o’
- - =1 k=1

Remark. Lemma 2.3 extends Lemma 4 of Matula [8].
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Theorem 2.4. Let {X,1,1 < k < n,n > 1} be an array of rowwise AANA
random variables with EX,; = 0 and EX2k < oo foralll <k <n and
n > 1 and {ank,1 < k < n,n > 1} be an array of positive constants with
anr < C for alln > 1 and some constant C > 0. Let moreover
{h(n),n > 1} be an increasing sequence of positive constants with h(n) 1 oo as

Onk S 1: ZZ:]_
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n 1T oo. Suppose that

(a
(b

(d

(2.1.4)

)
) h
(©
)

{Xnk} is h- mtegmble concernmg the array of constants {an},

)Y g ank? = = O((logn)™! ) for some 6(0 < 6§ < 1),
h(n) > Cn® for some a > %,

Yo g% (m) < .
Then, for alle > 0,

o0
;n ll}l]ax |Zanank| >e) <

Proof. For each 1 < k < n, n > 1, truncate at the level h(n) and put

(2.1.5)

Ynk =

Xkl (| Xnk| < h(n)) = h(n)I (Xnx < —h(n)) + h(n)I (Xnr > h(n)).
Noting that EXui] (| Xpr| < h(n)) = —EXppI(|Xnk| > h{n)) in view of the

fact that EX,,x = 0, we have

(2.1.6)

IA

IA

IN

P . n
(lrél]ax [Za e Xnk] > €)

P(lrélja<x | X 0j] > h(n ))+P max |ZankYnk| > ¢)
P(lrgax | Xnj| > h(n))

+P( lr£]a<xn|2ank wk — EYop)| > e — max |ZankEYnk])

> P(|Xni| > h(n))
k=1

+P( lrgjaéc |Zank wk — EYnr)| > € — max. |ZankEYnk|)

By assumption (a) we also have

J
max E ank EY 1
1515nlk <" k|

i
= gﬁgﬂll;ankE{XnkI(and < h(n))
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—h(n)I(Xne < —h(n)) + B()I(Xpni > h(n))}]

Y ant{ Bl Xkl (1 Xni] > h(n))}

<
k=1
+ > ankh(n)EI(| X | > h(n))
k=1
< 2ZankE|Xnk|I(|Xnk| > h(n))
k=1
(2.1.7) < 2 anE|XnklI(| Xnk| > h(n)) = 0, asn = oo.
k=uy,

Hence, it follows from (2.1.6) and (2.1.7) that for n large enough

P( X
1Iélja<x |Zank nkl > €)

i
£
(2.1.8) < 2 P(|Xpni| > h(n)) + P(lréljagxn | ;ank(Ynk - BYur)| > )

It therefore remains to show that

Z n! ZP(|Xnk| > h(n)) < oo
n=1 k=1

and

[ele] 7 .
-1p €

ok (Yok — EY,, - _

;n max|§ak( 5 Bl > 5) <o

1<5<

It follows from Chebyshev inequality and assumptions EX?2, < oo for all 1 <
k<n, n>1and (c) that

(o]

Z n~! Z P(|Xnr| > h(n))
n=1 k=1
i n-! ZZ:I E|Xnk|2

<
- h?(n)
n=1
(2.1.9) < C Zn_za < o0
n=1

It also follows from Lemma 2.3, assumptions (b) and (d) that

o0 J
. £
(2.1.10) E 1 n P(lrgn]aéin | ,;_1 Ok (Yor — EYnr)| > 5)
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2 n
< 8211_1 “ZA+ (14 A?) 5 Z ank > EYrni?)
k=1
< C Zn_l Zansz[Xnk2I(|Xnk| < h(n)) + h2(n)I(| X k| > h(n))]
n=1 k=1
< C’Zn ! Zank2h2 )< C Zn_l(logn)_l—a < 00.
=1 n=1

Thus by (2.1.9) and (2.1.10) the proof is complete.

Corollary 2.5. Under the conditions of Theorem 2.4 we have

(2.1.11) Z nkXnt — 0 a.8. as n — .
k=1

Proof. By (2.1.4) we have

o > Zn max |Zanank| >€)
no:olz"+1—1
(2.1.12) = Z Z n- max |Zanank| >€)
11:0&”:2,
2> igplgngZ%l KXo k| > €).

By Borel-Cantelli Lemma and (2.1.12) we have

P T X'l 0
1r<r;a£1|2a2 pXoi x| >€i0) =

and hence,

2.1.1 i 5 Xoi 0 —
( 3) 1I<IEa<)§,|Za2 £ Xoi | = 0 a.s. as i — oo.

From (2.1.13) and the fact that
Jim | kz_lanank|

n J
< lim max |Zanank| < lim max |Za2i’kX2i’k|
k=1

T i—00 21 n<20 o i—00 1<5<2¢

the desired result (2.1.11) follows.
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2.2. Pairwise NQD random variables

A sequence of random variables {X,,n > 1} is said to be pairwise negative
quadrant dependent(NQD) if for all ¢ # j and all z;,z;, P(X; > 24, X; >
z;) < P(X; > z;)P(X; > z;)(see Lehmann [7]).

The following lemma is an extension of the well-known Rademacher-Mension
inequality.

Lemma 2.6 ([3, Chandra and Ghosal]). Let Yi,...,Y, be square integrable

random variables and let there exist a>,...,a% satzsfymg

E(Vos1 -+ Yomip)? <@y 4+ +a2

for allm,p > 1, m+p < n. Then we have

n

a?
(2.2.1) 1121?<Xni Y:)?) < ((logn/log3) + 2)? ; .

Theorem 2.7. Let {X,,1 < k <n,n > 1} be an array of rowwise pairwise
NQD random variables with EXpr = 0, EX2, < oo for all 1 < k < n and
n > 1 and {a.,1 < k < n,n > 1} be an array of positive constants with
ank <1, ZZ=1 ant < C for all n > 1 and some constant C > 0. Let moreover
{h(n),n > 1} be an increasing sequence of positive constants with h(n) T oo as
n 1T oo. Suppose that

(a) {X,} is h- mtegmble concermng the array of constants {ank},
(b) R*(n) Y rey Gni® = O((logn) %) for some 6(0 < § < 1),
(c) h(n) > Cn® for some a > 3.

Then for all € > 0, (2.1.4) holds.
Proof. The proof is similar to that of Theorem 2.4. Define Yy,; as in (2.1.5).

Then {Y,} is still pairwise NQD. Hence by assumption (a), (2.1.6) and (2.1.7)
we obtain

P( max ]Zanankl >€)

< ZP (| Xne| > h n))+P max IZank e — EYnr)| > )
k=1

Note that an(Ynr — EYni)'s satisfy the conditions of Lemma 2.6. As in the
proof of (2.1.9) it follows from Markov inequality and assumption (c) that

n

(2.2.2) i n™1 3" P( Xkl > h(n)) < C i n72* < 0o
n=1

n=1 k=1
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and as in the proof of (2.1.10) it also follows from Lemma 2.6 and assumption
(b) that

oo J
€
Zn_lP( max |Zank(Ynk — EYyni)| > 5)

1<j<n

~2
(2.2.3) < ) Zn ((logn/log3) +2) Zank2EYnk
k=1
< Zn ((logn/log3) + 2) Za k2h2(n)
k=1
< CZn (logn) 170 < 0.
Hence by (2.2.2) and (2.2.3) the proof is complete. O
Corollary 2.8. Under conditions of Theorem 2.7, (2.1.11) holds.
Proof. See the proof of Corollary 2.5. O

2.3. yp-mixing random variables

Definition 2.9. Let {X,,, —00 < n < 00} be a sequence of random variables.
Let B* be the o-algebra generated by {X,,n < k}, and By the o-algebra
generated by {X,,n > k}. We say that {X,,—00 < n < oo} is @-mixing if
there exists a non-negative sequence {¢(z),% > 1} with zli)rgo (i) = 0, such that,

for each —oo < k < 0o and for each 7 > 1,
(2.3.1) |P(Esy | Ey) — P(Ey)| < (i) for Ey € B FEy € Biyi.

Lemma 2.10 ([1, Billingsley]). Let ¢ be a B*-measurable random variable, and
1 be a Brii-measurable random variable, with |(| < Cy and |n| < Cy. Then

(2.3.2) | Cov(¢,m)| < 2C1C2(i).

Theorem 2.11. Let {X,x,1 < k < n,n > 1} be an array of mean zero and
square integrable random variables such that for each n > 1, { X1, 1 < k <
n,n > 1} is a p,-mizing sequence of random variables satisfying

(2.3.3) limsup ) n(i) < 0o
n—oo

Let {ank,1 < k < m,n > 1} be an array of non-negative constants such that
ank <1, Zzzl ant, < C for alln > 1 and some constant C' > 0, and an; < an;
if i < j for all n > 1. Let moreover {h(n),n > 1} be a sequence of increasing
to infinity positive constant. Suppose that

(a) {Xnk} is h-integrable concerning the array of constants {ank},

(b) h2(n) 7, ank? = O((logn)™>~%) for some 6(0 < & < 1),

(c) h{n) > Cn® for some o > %.
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Then (2.1.4) holds.

Proof. The proof is similar to that of Theorem 2.7 and only we can use usual
truncation technique. Hence, for eachn > 1, 1 < k < n, let

(2.3.4) Yok = XniI(|Xni] < h(n)).
Then
lrél]agin [ Z nk Xnk| > €)
J
< P(max [Xn| > h(n) + P(max | k\; @k Yoi| > €)
< P(|Xnk| > h(n))

k=1

+P( 1r<n]a;<x |z:an;c ke — EYnr)| > € — max IZankEYnkD

Note that EXnkI(ank| S h(n)) = —EXneI(| Xnr] > h(n)) in view of the fact
EX,+ =0 and that

= <
2ax ax | ZankEYnkl max ax | E_:ankEXnkI(ankl h(n))|
< ZankEankII(|Xnk| > h(n))
k=1
< Y anBXnklI(Xnk] > h(n)) = 0 as n — oo

k=u,

by assumption (a). Hence we have

P( max {Zanankl > £)

Z (1Xne] > hn)) + P( max |Zank e — EYo)| > )
It remains to show that

(2.3.5) Z n~! zn:P([Xnkl > h(n)) < 0o
= k=1

n=1

and

(2.3.6) Zn P(maXIZank(Yﬂk EYn)| > ) 0.
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By Chebyshev inequality and assumption (c), (2.3.5) follows. To apply Lemma
2.6 we need to show that

(2.3.7) lim sup Z Uk Onj Cov(Yor, Yn;) <0

n—o0 k=1

k<]

By Lemma 2.10 and assumption {b) we have

3

™M1

—

> Gnktn Cov(Yor, Vo) = nkn (it COV(Ynk, V(s iy)

n

ki1 fzml fm=l
k<
n n—i
< 2h (n) Z Z ankz‘ton{é)
<

20%(n) > " ank® Y pn(i) = 0,
k=1 =1

which yields (2.3.7).
Hence, by Lemma 2.6 and assumption (b), (2.3.6) follows, that is, the proof
is complete. O

Corollary 2.12. Let {X,.4,1 < k < n,n > 1} be an array of random variables
such that for each n > 1, {Xur,1 < k < n} is a m{n)-dependent sequence
of random variables with limsup,, .. m(n) < co. Let the other conditions of
Theorem 2.11 be satisfied. Then, (2.1.4) holds.

Proof. We only have to note that we can consider ¢,(7) = 0 for i > m(n) and
@n(i) = 1 for i <m(n), and so Y ., ¢ (i) < m(n) for all n > 1. a

Corollary 2.13. (1) Under conditions of Theorem 2.11, (2.1.11) holds, that
18,
(2.3.8) > 0k Xnk = 0 a5 asn - oo.

k=1

(2) Under conditions of Corollary 2.12, (2.3.8) holds.
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