J. Korean Math. Soc. 45 (2008), No. 4, pp. 1057-1073

TATE PAIRING COMPUTATION ON THE DIVISORS OF
HYPERELLIPTIC CURVES OF GENUS 2

EUNJEONG LEEf AND YOONJIN LEE}

ABSTRACT. We present an explicit Eta pairing approach for computing
the Tate pairing on general divisors of hyperelliptic curves Hy of genus
2, where Hy : y?> +y = 25 + 23 + d is defined over Fon with d = 0
or 1. We use the resultant for computing the Eta pairing on general
divisors. Our method is very general in the sense that it can be used for
general divisors, not only for degenerate divisors. In the pairing-based
cryptography, the efficient pairing implementation on general divisors is
significantly important because the decryption process definitely requires
computing a pairing of general divisors.

1. Imtroduction

Pairing-based cryptosystems have been one of the most active research areas
in cryptology due to discovery of an identity-based encryption scheme [4] and
its significance as a cryptanalytic tool [9, 16]. Recently, the Tate pairing and the
WEeil pairing have been used to construct various cryptosystems [4, 5, 6, 21]. It
is therefore significantly important to develop efficient methods of the paring
computation for the purpose of practical applications of the pairings to the
cryptosystems [2, 3, 7, 10, 11, 18, 19].

Most of pairing-based cryptosystems use a divisor D as a system param-
eter, which is a generator of an additive cyclic group with prime order ¢£.
Generally, inputs for pairing computation are usually aD for arbitrary inte-
ger a € {0,...,£}. Even though the generator D is constructed to be special
such as D = (P) — (0O), P € H(Fy» ) which was dealt with in [1], aD does not
need to have such a good property. In fact, the Tate pairing computation is
defined over the entire divisor class group of a curve, but the divisors do not al-
ways have to be written as a sum of points in the defining field Fs- ; such points
are called degenerate divisors [13]. Since the algorithm proposed in [1] works
only for degenerate divisors, we need to develop an algorithm which works for
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general divisors as well.

Recent developments [1, 8] on the Tate pairing implementation on hyperel-
liptic curves over a finite field Iy have focused on the case of degenerate divisors
as mentioned before. However, in the pairing-based cryptography, the efficient
Tate pairing implementation over general divisors is significantly important.
For instance, in the Boneh-Franklin identity-based encryption scheme, the pri-
vate keys are general divisors, and therefore the decryption process requires
computing a pairing of general divisors.

In this paper, in terms of efficiency of bilinear and non-degenerate pairing on
H,y, we compare the Eta pairing and the Ate pairing on supersingular hyper-
elliptic curves. Furthermore, we obtain very efficient algorithm for a pairing
computation over general divisors by reducing the cost of computing. The
reduction of the loop cost was made by using the divisor version of the Eta
pairing; the Eta pairing was introduced in [1]. In recent years Duursma and
Lee [8] introduced a closed formula of the Tate paring for a very special family
of hyperelliptic curves for the Tate pairing computation. This closed formula
significantly reduced the total number of iterations for the Tate pairing com-
putation over such curves. Barreto and others [1] showed why such curves are
very special to have a reduction of the loop cost for the final computation of
the Tate pairing. They provided us with a sufficient condition for a hyperel-
liptic curve to have a significant reduction of the loop cost in the Tate pairing
computation.

We find a general method for computing the Eta pairing over divisor class
groups of the curves H, in a very explicit way. So far only pointwise approach
has been made in [1] for the Tate pairing computation on the hyperellitic curves
H, over Fan. The paper [1] works only for degenerate divisors. Hence, when
divisors are not a sum of degenerate divisors, we present a general method and
algorithms for computing the Eta pairing over divisors by extending the idea
of [1] and using the resultant. We estimate a timing result of our algorithm
for the Eta pairing using our theoretical complex analysis and known timing
result of a multiplication in Fo» . According to our estimation, the Eta pairing
on Hy(Fy7e ) can be obtained in 2.4ms for general divisors.

This paper is organized as follows. In Section 2, we begin with a brief
summary of the Tate pairing, the Eta pairing and the Ate pairing. Section 3
discusses the Eta pairing and the Ate pairing on Hy for efficient pairing on
Hy. In Section 4, we obtain main results and algorithms for the Eta pairing
computation on the divisors of Hy. We finish our paper with complex analysis
to estimate the timing of the Eta pairing algorithm in Section 5. We use
SINGULAR software package for symbolic computations.

2. Tate, Eta and Ate pairing

In this section, we recall the basic definitions and properties (see [14] for
further details). Let I, be a finite field with ¢ elements and F, be the algebraic
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closure of F,. Hyperelliptic curves defined over IF, are algebraic curves of genus
¢ which are described by the following equation;

(1) H/F, :y* + h(z)y = F(z),

where F(z) in F,[z] is a monic polynomial with deg(F) = 2¢g + 1, h(z) €
F,[z], deg(h) < g and there are no singular points on H.
Now let

H = {(a,b) € F, xF, | b* + h(a)b= F(a)} U {cc},

and let H(F,) = Hn (F; x F;) be a set of rational points on H with the
infinite point co. We denote the group of degree zero divisor classes of H
by Jm, and it is simply called the Jacobian of H. Note that each divisor
class can be uniquely represented by the reduced divisor using the Mumford
representation [17]. Reduced divisors of the curve H can be found as follows.

Theorem 2.1 (Reduced divisor [14], [17]). Let F,(H) be the function field
given by H defined over F,. Then each nontrivial divisor class of Ju can be
represented by

D= Z —r(c0), wherer < g, Py # 00, P; € H.

Let P; = (ai, b;), 1 <i <r and up(z) = [[;=, (¢ — a;). Then there evists a
unique polynomial vp(z) € F, 2] satisfying
1) deg(vp) < deg(up) < g
2) b; = vp(a;)
3) up(z) | vp(2)* +vp(z)h(z) — F(z),
and D = g.c.d.(div(up(z)), diviup(z) +y)).
We denote a divisor class by D = [up,vp], where D is a reduced divisor and
up,vp are polynomials in F, [x] satisfying the three conditions in Theorem 2.1.
Now we recall the definition of the Tate pairing [9]. Let £ be a positive
divisor of the order of Jy(F,) with ged(¢, ¢q) = 1, and k be the smallest
integer such that £ | (¢ — 1); such k is called the embedding degree. Let
Jull] = {D € Jg | £D = oc}. The Tate pairing is a map
()e s Tl x T () 8T (Ep) = Foe/(Fpe)f
(2) (D,E)e = fen(E'),
where div(f,,p) = £D and E' ~ E with support(E') N support(div(f,.p)) = 0.
To obtain a unique value, the reduced pairing is defined by

HD,E) = (D, E){" V' = (D, E){ TN € g

for £| N | (¢* — 1), where p, is the set of ¢th roots of unity.
What follows is a useful result for the resultant computation, and for the
proof we refer to [22, Ch. VI].
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Theorem 2.2. Let F be a field, A, B € Flz], a1,02,...,0m, € F (= algebraic
closure of F') be all the roots of A, deg A = m, deg B = n, and a be the leading
coefficient of A. Then we have
res(4,B) = a” H B(a),
i=1

where res(A, B) denotes the resultant of A and B.

We can make the evaluation of the rational function at a divisor much more
efficient by using the following reduction technique.

Lemma 2.3. With the same notations as in Theorem 2.2 we have
(3) res(A, B) = (—-1)™"res(B, A).

In addition, efficient reduction method for computing the resultant is also
introduced in [22, Ch. VI]. When m > n, by Euclidean division algorithm, there
erist Q(z), R(z) € F(z) such that A(z) = Q(z)B(z) + R(z) with degR < n.
Then

4) res(A, B) = (-1)""res(B, R).

Barreto and others [1] classified certain curves which are very special enough
to have an efficient algorithm for the Tate pairing computation. They provided
us with a sufficient condition for a hyperelliptic curve to have a significant
reduction of the loop cost in the final computation of the Tate pairing over
degenerate divisors.

Eta pairing

We recall the Eta pairing introduced in [1] which is very useful for efficient
computation of the Tate pairing. The Eta pairing is defined on supersingular
curve with even embedding degree & > 1, and there is a distortion map
whose z-coordinate is defined over F /2. This type of distortion map allows
denominator elimination when the final powering (¢* — 1)/¢ is raised.

Let ¢ be a distortion map on a hyperelliptic curve H over F, with ¢ = p™.
For T € Z and two divisors D, E € Jy(F,), the Eta pairing [1] is defined by

nr(D, E) = fr.p(Y(E)),
where D' + (fr,p) = T'D for a reduced divisor D'.
For the relation between the Tate pairing and the Eta pairing, we refer to [1,
Theorem 1]. This is a generalization of Duursma-Lee’s method [8] and gives a
further improvement with shorter loop length by choosing a proper T

Remark 2.4. The result is given in [1, Theorem 1], but in the proof of the
theorem some validity is missing. In more detail, in the proof of Lemma 1
in {1], they wrote

Y QoneP) =Y Y. npe(S)S) =D np(y™ (P)),
P (P) P

P Sey-!
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where the last equality is not always true since the ramification index e~ (S)
is not necessarily 1. The condition 2 related to a distortion map in {1, Theo-
rem 1] is satisfied only for F,-rational points on H. However, when we work on
Jacobian variety with dimension g, a divisor defined over F, generally consists
of F,s-rational points on C.

In Lemma 2.5, we rewrite [1, Lemma 1] with correct proof. We also want to
point out that the divisor D does not have to be in Jy(Fy), and we may have
D in Jg(Fp) for some b € N.

Let H be a supersingular hyperelliptic curve. Assume that, for some b € N,
the multiplication by p® has an extremely special form such that

(5) P’((P) - (o0)) = ([p’]P) — (c0)

and the map [p’] of the multiplication by p® has degree p**. From the general
fact about the map between curves over a finite field [20, Corollary 2.12], the
map [p’] can be written as [p] = dnri,,, where ¢ is some separable automorphism

and g is a Frobenius map of p’th power. If we write [¢°] = 7 o w s, then we
have T = ¢"mgs.

Lemma 2.5. Let H be a supersingular curve over Fy as above. Let D, E
be divisors on H defined over Fp with order dividing N € N and let M =
(¢* —1)/N. Suppose T € Z is such that TD = ¢*D (mod ¢) and T = ¢* + cN
for some c € Z. Let ¢ be a distortion map on the curve H over Fy». Assume
that for any divisor E in Ju(F,)

(6) "l |(E) = 4(E),
where Y1} denotes a map obtained by raising the coefficients of 1 by sth power,
that is, if ¥(z,y) (Z az]:r iyl S byxiy?), then

= (Q_aie'y’. ) bie'y)
Then for divisors D,E in Ju (]Fq), we have
n(TD,EYM =n(D,E)"™
Proof. For an automorphism + defined over F,, we note that frpyovy =

(fr.p)3<e™). Since the divisors D, E and the morphisms ¢, w, are defined over
Fye , we obtain

fr.ro(W(E)) = frep@(E) = (fr.p o [¢'] 7 ((E))*
= frp 0 97" m 2w (W(E)) = (fr.p 091" )(E)
= fr.oW(E)”
from Eq. (6). The desired result is obtained by

Frrp@(ENM = frp@(E)M = fro@(E)MT=N = fr p(p(E)TM.
4

2b
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Let T* + 1 = LN for some a,L € N. Then, by Lemma 2.5 and lemmas in
[1], the relation between the Eta pairing and the Tate pairing is as follows:

(D, $(E)NL = np(D, E)MT*™

Ate pairing

Grager et al. [12] generalize the Eta pairing on supersingular curves to
ordinary curves by restricting the pairing to cyclic subgroups G; and G2 such
that

Gy = Ju[f)Nker(ny — [1]), G2 = Ju[f] Nker(my — [q]).

Let lcoo(fy,0) = (28, p)(00), where z € F, (H) is a uniformizer at oo over
F,.

Theorem 2.6 ([12]). Let H be a supersingular hyperelliptic curve over Fy, and
G1, G be given as above. Then with e = ged(k,q* — 1)

a(-,-) : G1 X G2 = pr : (D, E) = (fg,0/1coo(fq,0)(E))*
defines a non-degenerate bilinear pairing. Furthermore, the pairing 4 satisfies
(D, p(ENY = a(D, B)H"".

Remark 2.7. We want to compare the Eta pairing and the Ate pairing. In
Lemma 2.5 with b = 1, the condition Eq. (6)

79(D) = (D)

for D € Jg(F,) and the endomorphism v identifies the subgroup Ga = ¥(G1).
In Section 3, we discuss the difference between Eta pairing and the Ate pairing
on Hy over .

In fact, the fields of characteristic 2 are the most commonly used fields in
the cryptosystems. In this paper we work on the following curves:

(7 Hy:yv*+y=2"+23+d, d=0or1l

which is defined over Fo» with n coprime to 6. The curves Hy and H; are
hyperelliptic curves, and their divisor class groups have nice group structures.

3. Efficient pairing on Hy

In this section, we consider the Eta pairing and the Ate pairing on Hy. Let
q = 2" with n coprime to 6.

Endomorphism
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We use the same endomorphism v used in [1]. We identify the tower of
extension fields as follows:

Foi2n 2 Fo(a, w, So)
| st+so+uw’+uw®=0
Foor = Fy(a, w)
| v+ttt +1=0
For 2Ty (a).
We define an endomorphism % (or called the distortion map) by
¥ : Hq(Fo12n ) — Hq(Fp1n )
such that ¥(z, y) = (z + w, y + 522> + 517 + s0), where
sy =wt+ 1,8 = w? +w4,sg =50 +w® +uw.
In particular, if (zq, yo) belongs to Hy(Fon ) C Hg(Fyi2. ), then the z-coordinate
of ¥(xg, yo) is in Faen and y-coordinate of ¥(zg, yo) is in Faizn .

Octupling formula

There is an octupling formula of the point in [1]. As pointed in [1], octupling
a divisor on the curve Hy is computationally very simple, of which complexity
is almost the same as octupling of a point on elliptic curves.

Lemma 3.1. Let Hy be a hyperelliptic curve defined by y?> +y = 2% +2° + b
over Fon . Then for o point P = (o, B) in Hy,

8(P) — 8(00) = [, By] + div <g4’25$;(332588’i(é’) y)) , where

ar=a%+1, g = (® + B)% + 1,
gs.p(z, ¥) =y +2° + (&® + a)iz? +atzs + B+ b,

ug,p(z) = 2% + 2 + (0 + a)b,
us,p(z) = + (1)
We denote fs p = g:f)’ , Where
®  Gep= Il dipesr Usp= I uipuse.
Pgsupport(D) Pcsupport(D)

Eta Pairing on Hy

According to the result in [1, Section 7], the Eta pairing over the curve Hy
is optimal when T is taken to be £237+1)/2 _ 1 We take T = —2087+1)/2 _ 1,
In this case, by setting T = —T and D = —D, we have T = 2037+1)/2 4 1
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Let x = 251, Asn is coprime to 6, T = 2(57+1)/2 + 1 = 8% .22 + 1. Then

nr(D,E) = frpo((E)) = (f[ 8T fap, -A) (W(E)),
=0

where D;11 + (fs.p;) = 8D; with a divisor Dy = D and a rational function 4
is obtained from the final addition.
Now, with the notation as Eq. (8), we set

k-1

(9) (D, E) := (H Gé,sfaf_i -Ga,8=p - A) ($(E)).

=0

The Tate pairing and the Eta pairing over the curve H, are related as
follows [1, Theorem 1, Section 7.2]:

(10) (D, E)y =nr(D,B)"E" =i(D,E)"%",
where M = (212" — 1)/N, N = 2% — 20n+1)/2 y on _ 9(n41)/2 4 [ =
2l 4 2(n+3)/2 4 9 and ZMT = (260 _ 1)(24n2(nH)/2 _ 230 1 1),

Ate Pairing on Hy

Since the embedding degree is 12, ged(k,2™ — 1) = 3. Then from the
definition of the Ate pairing, we have

(D, E) = fo,p(E)?

for D € Gy,E € Gy. Since ¢ < T = 237+1)/2 1 1 the loop length of Miller
algorithm is less than the Eta pairing.

In summary, on Hy, we can define the following two efficient bilinear and
nondegenerate pairings:

nr i JEDE x JENE = pe,  (D,E) = fr,p((E)) "
a: G1 X G2 — e, (D,E) — fq,D(E)?’.

2MT

From Eq. (10), it is enough to compute 7 for the Eta pairing fr p(¢(E)) ¢
which does not involve the denominator of fr p. Even though the Ate pairing
has a 2/3 loop length of the Eta pairing, f, p is a fraction of Gs p, and Us p,
defined in Eq. (8) for each ¢,0 < i < n—1. The computation of the denominator
Us,p, (E) for each loop causes expensive timing cost.

In the following section, we find explicit formula to compute the Eta pairing
on general divisors which are represented by Mumford representation. In the
final section, we estimate a timing of our algorithm for the Eta pairing with
known timing result of finite field operations.
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4. Closed formula for the Eta pairing on Hy

What follows is the main theorem of this section. Barreto et al. [1] provide
an explicit formula for A(P, Q) on points P and @ in Hy(F2- ). We find a closed
formula for (D, E) with general divisors D and E in Jy, (Fs« ) in Theorem 4.1.

Notation: In this theorem, for any polynomial g, gl denotes raising the
power of 2¢ to only the coefficients of g(z), and also for just constant a, all =
a?.

Theorem 4.1. For general divisors D and E in Jy,(Fa-), the Eta pairing
with T = 2B7+1)/2 1 1 s given by

(11)
r 4
= [1{75772 (resx (Gi.a (X, o (X)), (X)) - res (G (X, (X)), w(0)) - A,
where
_3n-9-06: o = 3n—3+6i
- 2 7 - 2 ?

As=w*+ X, Bi=X*+X>+uw'+w? +v§§:1,
Ci=Y?+ X+ X*(w+w?) + X*(1 +w) +w’ +7+v%§:0+80,
Ag =X+ X +w?+w, Bs =X+w+vf;:1+1,
Cs =Y + X% (w*) + X (w* + w?) + w* +'y-|-v,2;;:0 + 50,
Gia(X,Y) = resz(AsZ% + BaZ + Cs, ulg)(2)),
Gis(X,Y) = resy(Z° + As 2% + BeZ + Cs, uls (2)),
and the first term A is given by
A = resx (resZ(AZ2+BZ+C uE(zy), uE(X)) with
A=X?+w?
B= X2+X+w +w+vdy

C=vp(X)+ X%+ (@' +w+ 1)X?+w'X +uw® + 0%
+v((n - 1)/2) + b+ sq,
and v(i) =1if i=1 (mod 4) and ~(7) = 0 otherwise.

23n 1

The explicit formulae for G; 4(X, ULE](X)) and G;s(X, v[Ee] (X)) are given in
Table 1.

Proof Let k = 2 . The intermediate formulas for the Eta pairing for points
=(,0),Q = (zQ yg) in {1, Appendix B] are given by
ga(W(@)F T =y + (@ +a)al + (o + 1+ 3k5)0y

+ 8 +9() + (25 + 2B)w + (¢ + o + Dw?
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+ (ael + ozzel)’w4 + sg,
gisW(Q) T =y + (@ +a)zh + 7 + o (o +aF)
+a +90) + (0 + o )w + (@* + TG + 1w’
+ (zF + 25w + so,
where v(i) = 1if ¢ =1 (mod 4) apd 7(2) = 0 otherwise.
Ifwelet X := 22" and Z := a®>* then by Theorem 2.2 we can derive Eq. (11)
except the last term A.

For the first term A, we need four times of D3, _3)/, and one addition with
D. Let D = (P1) + (P2) — 2(00) and D} be the reduced divisor equivalent to
2087+1)/2((P;) — (00)). As pointed in [1, Appendix B.7] (we only consider n = 3
(mod 4) without loss of generality), the reduced divisor D} has the form of
&(P;) + (—P;) — 2(00) and thus we have

2Cn+D/2 L 1)D = ¢(P1) + ¢(P2) — 2(c0) + (vp,vp,) = D} + Db + D,
where vp; is a vertical line at P;.
Then T'=8%-4 + 1 and (Px,;) — (00) = 8%((P;) — (00)). Since
8°D = Dy + (fs~,p)
= (Pe,1) + (Px,2) — 2(0) + (fs=,p),
4-8"D =4D, + 4(fs~,p)
=4 ((Pe1) — (00)) + 4((Px,2) — (00)) + 4(fs=,pD)
= D} + (fa,pe.) + Dy + (fa,p, ;) +4(fs=,0),
(4-8"+1)D =Dy + Dy + D+ (fap.,) + (fap.) + 4(fs=.0)
= ¢(P1) + ¢(P2) — 2(00) + (vp,vp,) + (fa,p. 1)
+ (f4,p.2) +4(fs~,D)

and we can ignore the vertical lines, the first rational function for one addition
with D is
fapey - fapes

Note that Py ; = (afﬁx +1, BJQ-M + afemﬂ +7(k)), where y(k) = 1if k = 1
(mod 4) and y(k) = 0 otherwise. (Note that we assume n = 3 (mod 4), so &

is odd). By Lemma 3.1,

6x+3 26m+2 Gr+2 26K.+2 6r+3
gap., =y+az°+ (a? + aj Yz? +a§ T+ 55 +a§ + (k) +b.
. 6r+2 3n-1 , 3n—1 . . . .
Since a3 =a? is a root of u[D" ! and we omit vertical lines appearing

in f4,p,, - f4,P. ., the first rational function for one addition with D is given by

R(:v,y) ‘= 04,P. 1 " 94,P, 2
=resz((a? + D22 + (@ + o +vh; VZ+y+28+vdy +(k) + b5 (2)).
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Then the polynomial L{X,Y) has the form
L(X,Y) = Ro(X,Y)
=resz(AZ2 + BZ + C,ul" " (2)),

where
A= (z+1) 0,
B = (z* +x+v%,3:;_1) o,
C=(+>+vhy +7(k)+b)op.
Since ¥(X,Y) = (X +w, Y + (w* + 1) X2 + (w* + w?) X + so), we have
A=X?+u,
B=X’+X+uw'+w+vdh, ,
C=Y+X%+ (w! +w—|—1)X2+'w4X—+-w3+v%)3,no_1 + (k) + b+ so.
Therefore, we have A = resx (L(X,vg(X)), ug(X)), so the result follows. O

Closed formula for #(D, E)

We find the closed formula for (D, E) by Lemma 2.3. In Algorithm 1 we
describe an algorithm for computing the 7j-pairing on divisors.

To compute the resultant in Eq. (11), by Eq. (4), we have

resx (Gia (X, o (X)), wl (X)) = resx (Rua(X), uf(X)),
where R; 4(X) = Gi4(X, UE}(X)) {mod ugé]) We simplify G; 4(X, v[Ee](X)) as

follows:
Gi,4(X, 'U[Ee] (X)) = Xx!? + hi’5X10 -+ hi’4X8 + hi,gXG + hi,2X4 + hi’1X2 + hi70
with h; ; given in Table 1. Refer to the step 13 in Algorithm 2.
Using the reduction formula X7 = ,uge]X + 1/][~e] (mod u[é] (X)) given by
(12) Ho = UE, V2 = UEQ
Ui =Uupi1pj-1 + Vj—1, V; = UE,0Mj—1, j=3,...,6,8,10,12,

we obtain

Ris(X)=(T-F)X +7-h
(13) =Ri41X + Riap,
where

= (K121 210, M8, K6, 15, [ha 1135 2, 1,0),
= (v12, V10, V8, V6, Vs, Va, V3, 12,0, 1),

i = (1, his, hia,hi3,0,R2,0,hi1,0,hig)

Riay:=fi-F; and Riq0:=7-h;.

i
7
7.
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This computation corresponds to the steps 15, 16 and 17 in Algorithm 2. There-
fore,

resx (Gia (X, 0i2(X)), uld(X)) = resx (Ria(X), ulf (X))

_ p2 [e] le] p2
=Ri41 - “E,lRiA,lRiA,O + uE,ORi,4,O

7

as described in the step 21 in Algorithm 1. In this algorithm, we use psle] = u3°
and vple] = 1/22e instead of “[5],1 and u[Ee]’O because o = ug1 and vy = ug.

Let
Gi,g (X, ’U[Ee»] (X)) = ki,4X4 + ki73X3 + ki’2X2 + kile + k?@o

with k; ; given in Table 1. Refer to the step 14 in Algorithm 2.
By proceeding in a similar way as for the case of G; 4, we obtain

resx (G (X, vl (X)), uldl(X)) = resx (Ris(X), uld(X))

_ p2 le] . le] p2
=Rg1 —ug Ris1Riso+ upolis o

7

as we see the step 22 in Algorithm 2. We therefore obtain the closed formula
for (D, E):
(14)

(D, E)

4
= A (T15677” resx (Gia(X, o 00)), uf () - resx (Gus (X, v (20)), wf ()
4
=A (HEZE3)/2(R?,4,1 - “%{1Ri,4,1Ri,4,0 + u[g‘],ORzzA,O)(R?,S,l - “[E],lRi,S,lRi,S,O + u[L;],ORz?,S,O))

and this gives the steps 25, 26 and 27 in Algorithm 2. In the steps 25 and 26
of the algorithm, for A, let L be a vector with coefficients of L(X,Y") defined
in Table 1. Hence the value A is equal to

2 2
Ly — uE’lLlLo + ’UlE’oLO,

where Ly = L- i and Lo = L - .

5. Complexity of the Eta pairing on general divisors over Hy

Now we compute the complexity of Algorithm 1. We use the following
notations: m is the time for a multiplication in Fs» and m;4 for a multiplication
in ]F212n .

The first precomputation of the step 2 through the step 5 needs 11m as shown
in Table 1. Note that we ignore the time cost for squaring because it is negligible
comparing to the time for multiplications. The second precomputation for the
step 7 and the step 8, we need 13m by counting the number of multiplications
in Eq. (12).

In for loop, we need 12m for the step 13 and the step 14 as shown in Table 1.
To count the number of operations for reduction step (Step 16 and Step 17),
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Algorithm 1 Eta pairing over Hy : y* +y = z° + 2 + b by the resultant

INPUT: D= {Up, Vpl, E =[Ug, Vg|] € Jy,(Fan ), endomorphism ¢, ¢ = 27
OUTPUT: #(D, E)
1: : Precompute powers of coefficients using up and vp for 0 <¢ <m—1 (Table 1).

[](—-ao,al[]<—a%,az[]<—a§.

2
3 boli] < b3, ba[i] « b3, ba[i] < b3, ba[i} « 63, bali) b3 , bs[i] b3
4 4:0[]<——co,c1[]<——c1,cz[]<—c2
it dofi] - d2', difi] « d¥', dali] « d2', dali] « d, dafi] < dF'
6: : Precompute powers of coefﬁments usmg UE and vg for0<¢<n~1.
7 Al (leaﬂloaﬂs al‘s v/‘s uu4 a#3 7/‘2 ,1,0) (Eq. (12))
8 i} + (V127”%0’V§ ’Vﬁyv”g‘a"g ’V317V2 .0, 1)(Eq (12))
9 []é—vEl,vo[]é—vEO
10 Set f 1
: fori=0to (n—3)/2 do
12:. e=(3n —9—61)/2 mod n, € _(3n—5+61)/2 mod n
13: G, i4 & x12 + h; ,5X10 + h; ‘4X8 + h; ,3X + h; ‘2.X4 +h; ’1X2 +hio (Table 1)
14:: Gig ki aX% +ki3X®+ki2X?+ki1X +kio (Table 1)
15:: Set Ei =(1,hi5,hia,hi3,0,h;2,0,h;1,0,hi0)
16:: Compute Ry 1 « jile] - h;
17:: Compute Ra g < Jle] - ft;
18:: Set Ei =(0,0,0,0,0,k; 4, ki 3, k‘i,g,ki,l,ki,o)
19:: Compute Rg,1 + file] - E,-
20:: Compute Rg,o + Jle] - ks
21:: Compute Fy « R<21,1 — p2lelR4,1Ra0 + ug[e]Rz‘O
22:: Compute Fg + R | — po[e]Rs 1 Rg,0 + v2[e] RE
23:: compute f < f-Fy-Fy
24:: end for
25:: Ly < L-ji, Lo « L -7 where L is a vector with coefficients of L(X,Y) defined
in Table 1.
26:: A(—L%—uEylLlLo-}—uE)OL%
27:: Return f4-A

we consider the entries of ;. From Table 1, we know that it appears as

i |sow® sow* sew® sow? sow! s w® w* w® o w? w 1
12 0 0 0 0 0 (V] 0 0 0 0 1
10 0 0 0 0 0 0 0 0 0 0 0 =
8 0 0 0 0 0 0 0 1 0 dip+1 b9 *
6 0 0 0 0 0 0 0 * 0 0 * ok
he={510 0 0 0 0 0 0 0 0 0 00
4 0 0 0 0 0 = 0 = * * * %
3 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 * * * * * * %
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 * 0 * 0 * * * * * * %

where * represents a nonzero entry at the position. Therefore, the computation
of Ry, = h; - ji in the step 16 needs 19m which is the number of *’s for
j=2,...,6,8,10,12 plus one for d;q. Similarly, we need 19m for the step 17.
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The entries of k; is shown as

sow5 S()U)‘1 S()U)3 S()U)2 S[)’Ll)1

Ed

S
=

£
w
[

=
g
g

(el

>
Il
O N W OO 0O = s,
Pl R e == =R=1k
X X ¥ X OO OO O O

CO OO0 OO
[T el en B e B e B e B e B e B o N & |
SO OO OO OC
* OO OO OO O OO
¥ OO O OO0 OO
¥ ¥ O ¥ OO OO OO
= x O ¥ OO0 COoC
*¥ ¥ O ¥ ¥ OO = OO
* ¥ O ¥ OO0 O OO
* ¥ O ¥ OO OC OO

and thus the computation of Rg; = k; - [ in Step 19 needs 9m which is the
number of ¥’s for j = 2,...,4. Similarly, we need 9m for Step 20. In Step
21, since R}, € Fysn, we need 6m for v[e]R] . For psle]Ry 1Ry, we need
2mys + 12m. To update the value f in Step 23, we need 2m; 2, and in Step 25
we need 24m for the inner products. The final exponentiation of 7 for unique
pairing value requires "T‘H squarings, 4 Frobenius actions, 2 multiplications and
a division [1, Section 7.5].

Hence, the total complexity for the Eta pairing on general divisors on Hy is

T, = 11m + 13m + 24m + 18m + 2m2

~3
+ nT(12m+2~19m+2~9m+2-18m+2m12 + 2ma2) + 2maz + 1113

_3
= 66m + 4m1z + 1115 + nT(104m + 4m1s),

where Iy is time for an inversion in F1. As mentioned in [15], F 12 is a pair-
ing friendly field of which multiplication m;, can be implemented by 5 - 3%m.
Therefore, the complexity of T has the minimal cost as

Ty = 66m + 180m + 112 + ”2;3(104m +4-45m)
= 246m + 142m(n — 3) + 11;.

When n = 79 as given in [1], T} takes 11488 m and one inversion in Fg.
According to [23], a field multiplication in Fsies can be performed in 2.3us on
SPARC 32-bit 900MHz. If we apply this timing result to T, then the Eta
pairing on H; using Algorithm 1 can be obtained in 2.64ms. The timing result
of the Eta pairing on general divisors of Barreto. et al [1] takes 4.20ms on
Pentium IV with 3GHz. This timing result for Algorithm 1 is comparable
to the implementation result in [1] on H(Fs7e) and furthermore, Algorithm 1
includes all divisors with supporting points in F2 not in Fy.



TATE PAIRING COMPUTATION 1071
TABLE 1. The explicit formulae for G; 4,G;s and L on Hy
Input | up(Z),vp(Z),us(X),ve( ), e =(3n-5+60)/2, e =(3n—9—60)/2
Output | Gia(X,v5(X)), GialX,v(X)), L(X,v(X))
S =up, +upa, 61 =up1vp,, 62 = upoup,, & = up,1Upo
€ = U%),o +Uupg, € =Up,oYp,1 +UDIUDY
€2 =upotpa +uh, +upiUpy +Upy, € = Up €l 6m
ag (0,0,0,0,0,0,0,09,0,up,1,0,01)
ay (0,0,0,0,0,0,0,0,0,0,0,up,;)
as {0,0,0,0,0,0,0,0,0,0,0, &)
by (0, 60,0,up,1,0, &1 +1, &z + &0, doy tuppo+e3—d3 +upy+1, 2+ +1,
up 17y + 03 + 8o + 83 + 61, €0+ 62, (1 + 1)y + (o + €0 + up,i€e1 + vh ) 1m
b (0,0,0,0,0, Up.1, 60, (50 -+ 52, uD,1,0, 51, up,1y +(§3 +(51)
by 0,0,0,0,0, &,0, up,1, “?),17 32+ 8 +1, 8 +upy, Sy +es+8; + uzD)1 +upgo + 1)
bs (0,90,0,0,0,0,0, 8,0,0, u%’1,52 + 61 + dp)
by 0,0,0,0,0,0,0, 1,0,80 + 1,80, €0 + 2 + up,1)
bs {0,6,0,0,0,0,0,0,0,0,0, &)
Gia | X2+ 3FN)X10 4 (b(“' VXS + (05 ol + b)) X6+(u2‘*‘ 0 4oz 4o el + b)) xd
(v"’e“a(C ) +vi~}”a0 +b(e hx?4 (vi’;z +vkg ao b(( ) 6m
cg (0,0,0,0,0,0,0,0,0, u}, |, b, €2)
c (0,0,0,0,0,0,0,0,0,0,0, &)
c2 (0,0,0,0,0,0,0,0,0,0,0, u,,)
do (0,0,0, uf, 1, do, 2+ 1, L, uhg+ufy; +1, 8+ + 1, up 1Y+ upa(upg +€r) + €0 + €2,
S0y 4+ upa(d2 + €o) + €3 + 3,
(e2+ Dy +vho+ealvpy +uby) +8 +upa(uhy +1+ud, +33)) im
d (0,0,0,0,0,80, up.a, Upy + €2, Up, uhy +81,0, doy +upileo + 02) + uj | + €3+ d3)
dz (0,0,0,0,0,u3 1, up1,00 + €2 + Lug 1,080,802 + Luf 7y +eo + L +up,(uhy + ) +uh,)
ds {0,0,0,0,0,0,0,up 1,0,u% ,0,85)
4 (o,o,o,o,o,o,o,u‘-;,1,0,0,1,1&,,0“)
Gig (d(cy)) (4 + (v} (<) +d<e + d(cl))‘(’* (vE och I vf;“ +1§'](‘ Nx?
+(umc‘”+v c0'>+d‘e )X + (wln! +vdgdk) +di) 6m
aLo (0,0,0,0,0,0,0,0,0,50,11011,(51)(3" 0
a1 {0,0,0,0,0,0,0,0,0,0,0,6p) "D
aLs (0,0,0,0,0,0,0,0,0,0,0,80)%> U
bro (0,0,0,80,up 1,81 + 1,80, €0 + 33 +up,1,02 + 81, 00(y +b) + €3 + 83 +upo +1,
up1(7+b) +83 (6 + )b+ 1) +vpae +vhy + 1) Y
b1 {0,0,0,0,0, 80,31, 01,0, 00, 62, 8o (v + b) + €3 + 63 + 8) "D
bi2 (0,0,0,0,0,80,u% ;, 80 + 01,80, un,1,02 + 81 + up.i + 1,80y +b) + €0 + €3+ 65 + 85 + 61 + 6y + 1JB*D
b (0,0,0,0,0,0,0,0,0,00,u}, ;, 61 + 8)" T
br.a (0,0,0,0,0,0,0,50,0,1,50+1,€0+52)(3" 0
b5 (6,0,0,0,0,0,0,0,0,0,0,80)°" 1
XS+ b sX° +braX " + (VEa0L2 + bL3)X° + (VEoar s + VE,; + vEaL) + 0L 2) X7
(vegary +vegaro+b1)X + (VE +vrearo +bro) 6m

The 12-tuples T’ =
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