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HYPONORMALITY OF TOEPLITZ OPERATORS ON THE
BERGMAN SPACE

In SunGg HwaNG

ABSTRACT. In this paper we consider the hyponormality of Toeplitz op-
erators T, on the Bergman space L2(DD) in the cases, where ¢ := f+§
(f and g are polynomials). We present some necessary or sufficient con-
ditions for the hyponormality of T\, under certain assumptions about the
coefficients of .

1. Introduction

The purpose of this paper is to study the hyponormality of Toeplitz operators
acting on the Bergman space L2(ID). Our interest is with Toeplitz operators
with trigonometric polynomial symbols.

A bounded linear operator A on a Hilbert space is said to be hyponormal if
its selfcommutator [A*, A] := A* 4 — AA* is positive semidefinite. Let D denote
the open unit disk in the complex plane, dA the area measure on the plane.
The space L?(D) is a Hilbert space with the inner product

(0= 5 [ 1A,

The Bergman space L2(D) is the subspace of L*(ID) conmsisting of functions
analytic on . Let L°°(D) be the space of bounded area measurable function
on D. For ¢ € L>(D), the multiplication operator M, on the Bergman space
are defined by M,(f) = ¢ - f, where f is in L2. If P denotes the orthogonal
projection of L?(D) onto the Bergman space L2, the Toeplitz operator T, on
the Bergman space is defined by

T, (f) = Ple- ),
where ¢ is measurable and f is in L2. It is clear that those operators are
bounded if ¢ is in L>(D). The Hankel operator H, : L2 — Lil is defined by

Ho(f) =T = P)(¢- f).
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Let H%(T) denote the Hardy space of the unit circle T = ). Recall that given
¥ € L*™(T), the Toeplitz operator on the Hardy space is the operator Ty on
H?(T) defined by Ty f = P(¢ - f), where f is in H?(T) and Py denotes the
orthogonal projection that maps L?(T) onto H?*(T).

Basic properties of the Bergman space and the Hardy space can be found in
[1, 4, 5]. In [2], Cowen characterized the hyponormality of Toeplitz operator
T, on H*(T) by properties of the symbol ¥ € L®(T). Cowen’s theorem states
that if 9 € L*(T), then the Toeplitz operator Ty, is hyponormal if and only if
the following ‘Cowen’ set £(¢/) is nonempty:

E() = {k € H=(T) : [kl < 1 and § — kip € H(T)}.

We record here some results on the hyponormality of Toeplitz operators on the
Hardy space, which have been recently developed in [3, 6, 8, 9, 10].

Proposition 1.1. Suppose that 3 is a trigonometric polynomial of the form
P(z) = ZnN:—m an2"™, where a_,, and an are nonzero.
(i) If Ty is a hyponormal operator, then m < N and |a_,,| < |an]|.

(i) If Ty is a hyponormal operator, then N —m < rank [T}, Ty] < N.

(iti) The hyponormality of Ty is independent of the particular values of the
Fourier coefficients ag,a1,...,aN—m of ¥. Moreover the rank of the
selfcommutator [T}, Ty] is also independent of those coefficients.

() Ifla_m|=lan| #0, then Ty is hyponormal if and only if the following
equation holds:

a_1 OGN _—m+1

a_sz AN —m+2
(1) anN . = 0-m

G aN

In this case, the rank of [Ty, Ty] is N —m.
(v) Ty is normal if and only if m = N, |a_w| = |an|, and (1) holds with
m=N.

The solution (Cowen’s theorem) of the hyponormality of T, on the Hardy
space is based on a dilation theorem of Sarason. It also exploited the fact
that functions in H2" are conjugates of functions in zH?. For the Bergman
space, LiL is much larger than the conjugates of functions in zL?2, and no
dilation theorem (similar to Sarason’s theorem) is available. So we cannot get
a similar version of Cowen’s theorem for T, on the Bergman space. Therefore,
at present, it seems to be quite difficult to determine the hyponormality of T,.

We will now consider the hyponormality of Toeplitz operators on the Berg-
man space with a symbol in the class of functions g + f, where f and g are
polynomials. Since the hyponormality of operators is translation invariant we
may assume that f(0) = g(0) = 0. We shall list the well-known properties of
Toeplitz operators T, on the Bergman space.
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If f,g are in L°°(D), then we can easily check that
a) Tsrg =Tr + 14
b) Ty* = T5
c) TT, = T5, if f or g is analytic.

These properties enable us to establish several consequences of hyponormality.

Proposition 1.2 ([11]). Let f,g be bounded and analytic. Then the followings
are equivalent.
(i) T54+5 is hyponormal.
(i) HyHy < HZHy.
(iii) Hg = CHy , where C is of norm less than or equal to ome.

Very recently, in [7], it was shown that if 0(2) = a_mZ™ +a_NZ" +amz™+
anzV (0 <m < N) and a,@N = G_ma_n, then
@
T, is hyponormal

= rlenP —la-nl?) > 25 (le—ml® = lam[?)  if |a-n]| < lan]
N2(la—n[* = lan?) < m*(lamf* — |a—m /) if Jan| < Ja-nl-

In this paper we continue to examine the hyponormality of T, in the cases,
where ¢ is a trigonometric polynomial.

2. Some necessary conditions for hyponormality of T,

In this section we present some necessary conditions for hyponormality of
T,. First of all, observe that for any s,t nonnegative integers,

s—t+lzs—t if s Z t

povey - {7

if s <t.
Let ¢ =g + f, where
N N
f(Z) = Z anz™ and g(z) = Za_nzn.
n=1 n=1

For m,n=1,2,..., N, define

A = det (“_” “;1")

-—n an

and we abbreviate 4, , to A,.

The following lemma was shown in [7].
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Lemma 2.1 ([7]). Let ¢ =g+ f, where

N N
f(z) = Z anz® and g(z)= Z a_nz".
n=1 n=1

Suppose T, is hyponormal. Then
(i) For eachi=10,1,2,....N —1,

: n?A, N A,
E _ _ + E —F >0
(i +n+ 1) +1)? Wit

(ii) For eachi > N,

N n24,
> - : > 0.
—~ (i+n+1)GE+1)2 ~
n=1

Our main result treats the extremal cases in view of Lemma 2.1:

Theorem 2.2. Let p=g+ f, where f(z)= ij:l anz™ and g(2)= 2521 Qen2™.
Suppose that T, is hyponormal, and that for some 0 <ig < N —1,

n?4, il An
) ) D rrrwegrst v RD Dl el

n=0 n=ig+1

Then the following conditions hold
(i) AB = C, where

: 0 ifi>gorj>N—ig+i—1
A = [aijligx(n-1) with ag;= A o 0
Ajsoyj—ivr f1 < 4,
B = [bj)(n-1)x1 with bj = 0,

= ; _ _yiml _nlio=jtln)
C = [¢jligx1 withey =0 and ¢; = =37, j(iofl)zio-i-n-i-l)Aﬂ,io—j-l—l-{-n-
(ii) AB = D, where
: 0 ifi>j
A = [ai)(N—io—1)x (N—ig—1) With az; = e
JI(N—ig—1)x(N—ig—1) ij Aigtj—ittiorjr i3 <7,

B = [bj)(N—io—1)x1 with b; = m,

_ . o i n(j+n
D = [dj}(n-io-1)x1 withdj := =3, (i0+1)(i0+j(-f]-1)(z?o+j+n+1)An,n-l-j'

(iii)
o n(N+j—io+n)

5 . > An j—1 n:0
; (ot DN +j+1)(N+j+n+1) mNHimiot

for each 0 < j <i4g—1.
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Proof. Let T, be a hyponormal operator and suppose (3) holds for some 0 <
tg < N — 1. Then it follows from Proposition 1.2 that for each non-negative
integer m # iy and ¢;,, ¢ € C, we have

<(H?H7 — H:Hg)(cip 2™ + cmz™), €ip2® + cmzm> >0,
or equivalently

el ((H3Hy = B H3) 2,2 ) + lew P (H 7 = Hy Hy) 2™ 2" )
(4)

+ 2Re (Cioan-;< (H%H;; — Hy*Hg)ZiO, zm>> > 0.

Observe that for 0 <ig < N —1,

<

—_—

HEHy - Hy Hz)2*, 2 )

L (jan o) = S BT 0 )

I
M=

— io+n+1 = (ip + 1)2
n2A A A
= . 2 + —
= (Zo+n+ 1)(7,0-1' 1)2 s iot+n+1
Hence by the assumption,
(5) ((Hz7 = HpHg) 2, 20) =0,

Since c;, and ¢, are arbitrary, it follows from (4) and (5) that
(6) ((H2H7 — Hy )20, 2m) = 0.
Ifio<m (io+1<m< N +ig—1), then we have

(7) <MT210’ Msz> = Z mam_*_n_ioﬁ.

n=1

If instead ip < m < N, then
io .
. io+1—n —
T_" 20 T_ m = . =~/ . 4~ m TL—T, T
®) (T, T2™) nz (i + L)(m + 1) "o

Alsoif N <m < N +1ig—1, then

(9) <T_Zio T—Zm> _ N_zmj*.io M_a -
FEOET L (g D(m ot 1) et
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Therefore (7), (8) and (9) give that for ip <m (ip +1 <m < N +14dg — 1),
(10) _
(H}H;z’“, 2™
'i n{m —ig +n)
< o Dm + D + 71 1)
N4ig—m 1
=<+ Z mam-%-n*ioa—?; ifig<m< N
n==ig-+1
N+ig—m

_i0+n) . .
| L G Do NEmSN+o

am-{-n—-ioa‘n—

Similarly, we have

(11) '
(HyHgz",2™)

ft'o

Z n{m —ig +mn) J—
< Tig + D(m + D(m +n 4 1) —mmi=n
N+1o—m 1
= + Z m —(m4n— lo)a’—n if i() <m<N
N+?o_—zm+1 ( . )
nim — g ([ e 4 .
2. Gt ) (mA1)(mant1) —(min-io)d=n if Nsm<Ntio—l.

Thus by (10) and (11) we have that for ip <m (io + 1 <m < N +ig — 1)
(12)

((H3H; ~ HyHg)z",2™)
i

(Z n(m —ig +n) T
— (ig+1)(m+1)(m +n+1) Snmiotn

N4ig—m 1

!+ Y e At if ip <m < N
n=ig-+1
N4ig—m

n(m — iy +n) _— )
Anm—' n f N <N —-1.
| nZ::l o+ D(m+ D)(m+nt1) "ot =ms Nt

If 0 < m < 1p, then we get

N+4+m—1p 1

i m\ P o
<M?z °, Myz™) = nzl Z_O+n+1anam,m+n
and
m+1-n

10 1M . AL e
<sz Tsz ) g;l o Dm 1)ana10—m+n-
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Thus we have, for 0 < m < 1,

= n(ip —m +n)

HiHyz",2™) = nTio—min
(H7Hpz",2™) Z;@O+Uon+nao+n+naa°””

(13)

N4-m— lo 1
Paee— P01 ¢ 4
+ Z 10+n+1nzo —mtn-

n=m-t1
Similarly, we have that for 0 < m <,
m

wrr o m (tp —m+n) S
= Hg2™ - —nl_(ig~m4in
(HyHg2', ") E:@W+Dmmﬂﬂm+n+na #-tio—man)

(14)

N+m—ig

Y m-%n-kl (-nf~(ig—m+tn):
n=m-+1

Thus by (13) and (14) we also have, for 0 < m < i,

(15)
. )0 n(io — m+n) A
((fpty = HyHg)2" 2" ) = Z(zg+1)(m+1)(zo+n+1} oot

N+m—ig

1
+ ._‘"_—‘”An‘io——m—i—n-
it ip+n+1

It follows from (5), (12), and (15) that for 0 <4y < N ~ 1,

N+m—ig 1

= A i
. 20+n+1 1,80~ 11

n=m+

- nfip —m+n)
=T 1 Anig—min if 0 < < 19,
2:1 (20 + 1}¥{(m + V)i +n + 1) yig—m+ H0<m<y

N+ig~m
1
4n,m—~io+n

— m4n+1
n=tp+1

10 i
n(m —ip +n) o
— An m—1 f < < N,

;(i0+1}(m+1)(m+n+1) m—igtn L0 <M

and

N4ip—m

n(m —ip +n) ' .
‘4nm-i n:':O fN < gN -1.
(s +D(m+(m+n+1) o+ I <m + g

n=1

This proves (i), (ii), and (iii). O
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Theorem 2.3. Let o =g+ f, where f(2) =Y, anz" and g(2) = 25:1 a_n2".
Suppose that T, is hyponormal, and that for some iy > N,
N

n?A,
(16) nzzl Gotnt Dt

Then we have

« n(n + j)
D 2 G 74D+ s s D

Anmi; =0 for 1ISGSN-1

N—j

n(n + |
18 ': e

n=1
Proof. Let T, be a hyponormal operator and suppose (16) holds for some
19 > N. Then by assumption we have that for ig > N,

N 2
. N ; _ nAn —
<(H7Hf ‘HﬁHg)zo’zo> =2 Gotnt Do +17 0

n=1

Thus it follows from (4) that for each non-negative integer m # 4o, we have
(19) ((HHz - HyHg)z,2™) = 0.
Ifip <m < N +1ig — 1, then

N—m+ig 1
<M7220, M?Zm> = nzl mﬁam—io-{—n
and
N—-m+ig .
. 19 + 1-—n
T2, T52™) = e T Gm—igtn-
(Tg2", Tpe™) ; (ig + L)(m + 1) “némio+
Thus for ip < m < N +1i5— 1 (ip > N), we get
(20)

NAdoTm n(n +m —ig)

*Ho — H*H-)z9© z™) = A m—iotn
<(Hfo HgHg)z \ 2 > Z (Z,O+1)(m+1)(m+n+1)An,m—zo+n'

n=1

Similarly, for ip — N + 1 < m < ig (ip > N) we have
(21)
N+m—ig .
* « o m n(n + iy —m)
((H:Hz - HyHz)z,2™) =

o Go+Dm+1Dlo+n+1)

By (19), (20), and (21), we see that for i > N,
(22)
N+ig—m

n(n +m — io N |
Anm—i n = f < -1
,; (io+ D(m+D)(m+n+1) Pt 0 ifip<m<N+ig—1

n,ig—m-—+n-
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(23)
N+m—ig n(n + i() _ m)
2 Got D(m+ Do +n+ 1)

An,io—m+n =0 fig—N+1 <m < ig.

n=1
Putting j = m — 49 and j = ig — m, respectively, in (22) and (23) gives the
result. O

From Theorems 2.2 and 2.3 we get the following corollaries.

Corollary 2.4. Let o=g+f, where f(z)= ZnNzl anz” and g{z)= 25:1 a_n2™.
If T, is hyponormal and (3) holds for some 0 < iy < N — 1, then

N—ig

1
_—An ntig — 0.
n;l n+ig+1 tio
Corollary 2.5 ([7]). Let ¢ = g+ f, where f(z) = ZnNzl anz" and g(z) =
22,:1 a_nz™. If T, is hyponormal and ||f|| = ||g||, then we have
A,l Ag’g AN,N 1

0 Ais Ass ... ... Axan z

0 0 Az ... ... An-an %

0 0 o0 : [ =0

. 1

: : A n-1 AonN Ny

0 0 ... .. 0 A ) \FE
Proof. We have the result by putting ig = 0 in Theorem 2.2 (ii). O
Corollary 2.6. Let o=g+ f, where f(z)zZnN:1 anz" and g(z)=ZnN:1 A

(N >3). If T, is hyponormal and (16) holds for some iy > N, then we have
Ain=A Ny1=An=0.

Proof. Putting j = N —11in (17) gives A; ;v = 0 and putting j = N —2in (17)
and (18) gives that

N-1 2N
@I D(VT) ot N )(NFiiD) Ain-1) _ (0
__N-1 . N A 0/
(2()——N+3)(20+2) (lo—N+3)(lo+3) 2,N
Observe that

N-1 2N
det <<"°+N7Vl_>{N+i°> <i°+N“12>}VN+"°+1>> =0 ifandonlyif N =2.
(i0—N+3)(i0+2) (i0—N+3)(i0+3)

Thus we have that A; y—1 = Aoy =0. O

Corollary 2.7. Let o=g+f, where f(z):Zi:1 anz"™ and g(z) :Zizl a_nz".
If (3) or (16) holds for some ip > 1, then T, is hyponormal if and only if v(2)
satisfies one of the following two conditions:
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(i) f(z) =ag(z) for some |a] =1 (in this case T, is normal);
(i) f(2) = amz™ +anz", 9(z) =a_mz™ +a_n2V, Apun=0(1<m<
N < 3) and (2) holds.

Proof. Suppose T, is hyponormal. We will show that 4,92 = As3 = A3 =0.
If ig > 3, this follows from Corollary 2.6. If ip = 1, then putting j = 0 in
Theorem 2.2 (iii) gives A1 3 = 0 and by Theorem 2.2 (i) and (ii) we have

1 1 Ao 0)
(L D@)-0)
Therefore A; 3 = Az 3 = Ay 3 = 0. If ip = 2 then by Theorem 2.2 (i) we get
A1z =0and 5542 + £ 425 = 0. Putting j = 0 in Theorem 2.2 (iii) we sce
that 2A4; 2 + 5423 = 0 and therefore A; 5 = Ay 3 = 0. Thus by (2), (i) or (ii)

holds. The converse follows from Proposition 1.2 and (2). This completes the
proof. O

Example 2.8. Consider the polynomial
0(2) =422 + 222 + 7+ 2+ 222+ B2 (|B] = 4).

Then ¢(z) satisfies the equality (3). Thus by Corollary 2.7, T,, is hyponormal
if and only if 8 = 4.

Example 2.9. Consider the polynomial
p(2) =82° + 22 + fz + 2 + 722 + 22° (18] = [v]).-

Then ¢(z) satisfies the equality (3). Thus Corollary 2.7 shows that T, is not
hyponormal.

3. Some sufficient conditions for hyponormality of T,

If f(z) = ZTILQ anz™ (N > 2) and h(z) = az + f(2), then the Toeplitz
operator T%, , on the Hardy space is hyponormal if and only if a = 0 (Propo-
sition 1.1(iv)). On the contrary, the following theorem shows that the Toeplitz
operator T? -, on the Bergman space is hyponormal if |a| is sufficiently large.

Theorem 3.1. If f(2) = 2522 anz™ (N > 2), h(z) = az + f(2), and A :=
max{la;| : 2 <i < N}, then T3, ,, is hyponormal when |a| > 2N2A.

Proof. Let K; := {ki(z) € L% : ki(2) = Y o0 yenntiz T} for i = 0,1,2,
..., N — 1. Then by Proposition 1.2, we have that Tj,4 is hyponormal if and

only if ((HyHy, — H3Hy) SN ki(2), SN ki(2)) > 0 forall k€ K; (i =
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0,1,2,...,N — 1), or equivalently

3 <2Re<H7k,~(z), EH;ki(z)> + }a|2<Hgki(z), Hgki(z)>)
=0

(24)
+ b <2Re<H7ki(z),‘ngkj(z)> + |a§2<Hgki(z),Hgkj(z)>) > 0.
£, 1,520
But we have
(25) <H’j’ki(2),aH‘5ki<2)> =0
andfori #j (i,j =0,1,2,...,N = 1),
(26) <H§ké(2), Hzk; (z)> = 0.

Putting (25) and (26) in (24) we have that 77, ,, is hyponormal if and only if

N-1 N-1

27) > |al*(Hzki(2), Heks(2)) + ) 2Re(a(H?ki(z),Hgk}-(z)))20.

i=0 i#d, 1,520
Observe that

N-1 o)
— 1 2
(28) ;(H—z_ki(z)szkl(z)> _T; (n+2)(n+1)2§cnl
and
N-1 N N-1
(29) > (Hyki(2),Hekj(2)) = Y @m Y, (Hemki(2), Hzk;(2)).
i#) 1,520 m=2  ij, 4,520

Form =2,3,..., N, we have
(30)

N-1 N-1 1

Z <M§mki(2),Mgkj(Z)> = Z Z T CNnt j+m—~1CNn+ j

id, 4,j20 §=0 n=0 Nn+j+m+1
and
N-1
Z <sz ki(z),Tgkj(z»
@y
S et (N4 +m)(Nn g +1) i

Combining (30) and (31) gives that
(32)

N-1

00 m .
#],Zi:p()(]f?m ki(2), Hzky(2)) = nz:;) (n+m+Dn+m)(n+1) Enlrtm-1-
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Putting (32) in (29) and putting (28) and (29) in (27) we see that T7, is
hyponormal if and only if

la '2Z(n+2)n+1 glenl”

(33) N -
m
™ 4 2k % ik ££ 2] >O
+2Re( WZ:ZG Z n+m+1)(n+m)(n+1)b Cnt 1>

Note that the inequality (33) holds if the following inequality holds for each
m=2,3,...,N,

3 len]
:;_0 (n+2)(n+1)2
2(N - 1jan| m

- la| Z (n+m+1)(n+m)(n+1)|C"HC"+m_1"

So it follows from (34) that T hl8 hyponormalifforalln >0, m =2,3,..., N,

QAm
(35) {n+ m1+ 1)(n+ mi(n +1)
eI

lcnncn-km—l‘

1
(n+m+1){n+m

)2 lcn+m—1l27

where ¢, = g—]\“—i}{“—m]ﬁ. Observe that the inequality (35) holds if

2 o 4(n+m+1) .
. n+2
Let A = max{|a;| : 4 = 2,3,...,N}. Then T%,, is hyponormal when |a| >
2N?A. This completes the proof. ]

Corollary 3.2. Let f(2) = S0 ,an2™ (N > 2), g € H® and Ty be a
hyponormal operator. If h(z) = az + f(z) and |a| > 2(N — 1)A, where A :=
max{|a;] : 2 < i < N}, then Tyyn is hyponormal.

Proof. This follows from Proposition 1.2 and Theorem 3.1. |

Let f(2) = Zjnv:—ll (N > 2) and h(z) = f(2) +az". Then the Toeplitz operator
Ty, on the Hardy space is hyponormal if |a| is sufficiently large ([6]). The
following theorem shows that the Toeplitz operator T}- 1, on the Bergman space
has the same property.

Theorem 3.3. Let f(z) = ZN 11 anz" (N > 2), h(z) = f(2) + az" and

o

A:=max{|a;] : 1 <i < N=1}. If|a| > 2V2(N-1)A, then Tz, is hyponormal.
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Proof Let K; := {ki(z) € L2 : ki(2) = 300 jenntszN™Ti} for ¢ = 0,1,2,
- 1. Then Proposmon 1.2 gives that T3, is hyponormal if and only 1f

<u{H~4r 2o ki(2), Yy ki2)) > 0 for all ks € K; (1 =0,1,2,...,
N —-1),o0r equlvalently
N-1

Z |a|2<HEN k,'(z), HEN kl(z)>

i=0

4—2 m@Z%Hk %WWPG

i#£f, 4,520

On the other hand, we have

N-1
Z@mmmmw

N-1

(36)

(37)
\ N?
=2 oyweiel +nz (n+ N+ Die + 17

and foreachm =1,2,...,N -1,
(38)

leal?,

N-1 o

Z <Mzmki(z),MENkj(z ; Z Nin+t 1) it 1 CNn+iCN(n+1)—m+i

i#5, 4,520 —
and
N-1
Z (Tsmki(z), Ten ki (2))
i#j, 1,520
m—1 oo ]
Nn-m+i+1
) n+iCN(n+1)—m+i
( ; Nn+i+1)(N(n+1)_m+i+1)cN+cN( FE—
N—-1 oo
Nn-m+i+1 “
+;nnz: Nn+i+1) N(n+1)—m+i+1)cN"+’cN(n+1)—m+z‘-

Combining (38) and (39) we see that

N-1
>« Heonkj(2))
i#3, 1,520
m—1 1
WO = D o Rget

+Z mN
= m+Dn+N-m+1(n+N+1

) CnCn4N—m
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Putting (37) and (40) in (36) we have that T, is hyponormal if and only if

S~ 1 ) N?
]a|2(z ey o L B Z n+N+1 ){n+1)2| cnl )
N-1 m—1

1
(41) +2Re{a E am< E e O Gk N 02
tn+ N+1

m=1

mN
nCntN—m | ¢ = 0.
+;ﬂ(n+l)(n+N_m+1)(n+N+l)Cc+;\ )}_

The inequality (41) holds if for each m =1,2,3,...,N - 1,

Z—: N+lc”|2+z n+N+1)(n+1)2!/"|2

1

(42) am(;) e leallens

+i mN leallc |
 m+Dn+N-—m+Dn+N+1) " D

where oy, = 28-Ulenl Note that (42) holds if for m = 1,2,...,N — 1,

A(N-1)* %gnﬁm m+1) ifn=0,1,2,...,m~1
7 it ) Ry Sy ety ’
4 1)2fa |2m3(n+2N—m+1 : —
PO B A
4(N=1)*lam, 42N —m+1 i

(n+1\717:-1)N2 ifn>N.

lal?
(43)  (lal?

la/?

IV v v

Observe that (43) holds if |a] > 2v2(N — 1)|aw,| for all m = 1,2,...,N — 1.
This completes the proof. a

Corollary 3.4. Let f(z) = 27]::1 anz™ (n > 2), g € H® and Tgyy be a
hyponormal operator. If |a| > 2v2(N — 1)A, where A := max{ja;| : 1 < i <
N — 1} and h(z) = f(2) + a2, then Ty1s is hyponormal.

Proof. This follows from Proposition 1.2 and Theorem 3.3. O

Example 3.5. Consider the polynomial
0(z) = 22 + 27 + 42 + 2°.

Then (2) shows that T, is hyponormal. Put 9(z) = 22% + 2% + 42 + 2% + 3225,
Then Corollary 3.4 shows that Ty is hyponormal.

Acknowledgement. The author would like to thank the referee for his/her
precious comments and advice.
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