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LINEAR OPERATORS THAT PRESERVE PERIMETERS OF
BOOLEAN MATRICES

SEOK-ZUN SonG, KYyunGg-TAE KanG, AND HANG KYUN SHIN

ABsTrACT. For a Boolean rank 1 matrix A = ab?, we define the perime-
ter of A as the number of nonzero entries in both a and b. The perimeter
of an m X n Boolean matrix A is the minimum of the perimeters of the
rank-1 decompositions of A. In this article we characterize the linear
operators that preserve the perimeters of Boolean matrices.

1. Introduction and preliminaries

The Boolean algebra consists of the set B = {0, 1} equipped with two binary
operations, addition and multiplication. The operations are defined as usual
except that 14+ 1 = 1.

There are many papers on linear operators that preserve the rank of matrices
over several semirings. Boolean matrices also have been the subject of research
by many authors ([3], [4] and [5]). Beasley and Pullman ([1]) obtained charac-
terizations of rank-preserving operators of Boolean matrices. Song et al. ([6])
characterized the Boolean linear operators that preserve rank and perimeter of
Boolean rank-1 matrices only.

In this article we extend the results in [6] to matrices of arbitrary Boolean
rank. That is, we characterize the linear operators that preserve the perimeters
of Boolean matrices of arbitrary rank.

Let My, , (B) denote the set of all m x n matrices with entries in the Boolean
algebra B. The usual definitions for adding and multiplying matrices apply to
Boolean matrices as well. Throughout this paper, we shall adopt the convention
that 2 < m < n unless otherwise specified.

A Boolean matrix in M, ,(B) is called a cell if it has exactly one 1. We
denote the cell whose one 1 is in the (i,7)!* position by E;;. Let E =
{Bijl1<i<m, 1<j<n}

An n x n Boolean matrix A is said to be invertible if for some X, AX =
XA = I,, where I, is the n x n identity matrix. This matrix X is necessarily
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unique when it exists. It is well known that the permutation matrices are the
only invertible Boolean matrices (see [1]).

If an m x n Boolean matrix A is not zero, then its Boolean rank, b(A), is the
least k for which there exist m x k and k x n Boolean matrices B and C with
A = BC. The Boolean rank of the zero matrix is 0. It is well known that b(A)
is the least k such that A is the sum of k¥ matrices of Boolean rank 1 ([1], [6]).
IfA= Ele A; is a sum of Boolean rank 1 matrices A;, then this sum Zle A
is called a Boolean rank 1 decomposition of A. Further, the zero matrix is the
only matrix with 0 rank 1 decomposition.

If A and B are in M,,, ,(B), we say A dominates B (written B < A or
A > B) if a;; = 0 implies b;; = 0 for all ¢, j. Equivalently, B < A if and only
if A+ B=A.

Also lowercase, boldface letters will represent vectors, all vectors u are col-
umn vectors (u® is a row vector) for u € B™ [= M, ; (B)].

It is easy to verify that the Boolean rank of A € M, , (B) is 1 if and only if
there exist nonzero (Boolean) vectors a € M, ; (B) and b € M, 1 (B) such that
A = ab®. And these vectors a and b are uniquely determined by A. Therefore
there are exactly (2™ — 1)(2" — 1) rank 1 m X n Boolean matrices.

The perimeter of a Boolean rank 1 matrix A = ab® € M,, ,(B), p(4), is
|a |+ | b| where | a | denotes the number of nonzero entries in a. Since the
factorization of A as ab?’ is unique, the perimeter of A4 is also unique (see [1]).

For A € M, »(B), the perimeter of A, p(A), is defined as

k

min {Z p(4;) | A= Z A; is a Boolean rank 1 decomposition of A}
i=1

Example 1.1. In M, , (B), consider these matrices:

a=lo o) =lo ]t o m=ly o =[o]lr 11
o (3 2]-[4]ur or<[2]io 0

o[ ]-[]e e[S 0

B=|y oy =[1 )00 10

Then b(A) = b(B) = b(E) = 1 but (C) = b(D) = 2. And p(4) = 2,p(B) =
3,p(C) = 4,p(D) =5 and p(E) = 4.

Let Py, k = 2, ..., mn, denote the set of matrices in My, , (B) whose perime-
ter is k. An easy observation is that every matrix in M, , (B) whose perimeter
is either 2 or 3 has Boolean rank 1.

A line of a matrix is defined to be a row or column of the matrix. The term
rank of a matrix A, t(A), is the minimum number of lines that contain all the
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nonzero entries of the matrix (see [2]}). A generalized diagonal of an m x n
(in < n) Boolean matrix A is a submatrix consisting of the sum of m cells
no two in any one line. So, the set of permutation matrices is the set of all
generalized diagonals of J,, the n x n matrix of all ones.

A mapping T : Mp, ,(B) — M, ,(B) is called a Boolean linear operator if
T(A+B)=T(A)+T(B) for all A, B € M,,, ,(B) and T(0) = 0 for zero matrix
0 € My,n(B). A linear operator T : M, ,(B) = M, ,(B) is called a (U, V)-
operator (see [6]) if there exist invertible matrices U and V of appropriate
orders, such that T(A) = UAV for all A € M,, ,(B), or, m = n and T(4) =
PA'Q for all A € My, »(B) where A* denotes the transpose of A. A linear
operator T is said to preserve a set Q if A € Q implies T(4) € Q.

There have been many articles on linear preserver problems. For an excellent
survey see [4, 5]. In [2], the linear operators that preserve the term rank
and other combinatorial properties of matrices were characterized and in [6]
the linear operators T' : M, , (B) — M, (B) which preserve both the set of
matrices of Boolean rank one and the set Py for some k were studied.

In the followings, each linear operator on My, ,, (B) means the Boolean linear
operator.

2. Perimeter preservers of Boolean matrices

In this section, we characterize the linear operators that preserve the perime-
ter of Boolean matrices in M,, . (B).

The following example shows that not all perimeter-2 preserving operators
T are of the form T(A) = UAV for some invertible Boolean matrices U, V.

Example 2.1. Let T : M, »(B) — M, »(B) be defined by

a b 1 0
T[C d}—(a+b+c+d){0 0].
Then T is a linear operator and preserves P». But T is not a (U, V)-operator:
If there existed invertible matrices U and V such that 7°(4) = UAV for all
A € My 5(B), then for j = 1,2, we have T(E, ;) = Uee;'V = u;v;*, where

1 [0 ]
e = 0 , 82 = 1

-

and u; is the first column of U and v; is the jth column of V. But

T(E1g) = [(1) 8} = (I)J (1,0]
and .

TE =g o] =000
and hence _
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which is not invertible. This contraction implies that T is not a (U, V)-operator.

Moreover, T does not preserve P3, P, and P5 since T(B) =T(C) =T(D) =
A for the matrices in Example 1.1.

Theorem 2.1. If T is a (U,V)-operator on M, »(B), then T preserves the
perimeter of each Boolean matriz.

Proof. Case 1. Let A; be a matrix in M,, ,, (B) with b(4;) =1 and A; = ab’
be the factorization of A; with p(A4;) = |a] + |b|. Since T(4;) = UAV =
(Ua)(b*V) = (Ua)(V*b)! and U,V are invertible matrices (and hence permu-
tations), we have

b(T(A)) =b((Ua)(V*b)') =
and
p(T(A)) = |[Ua| + |V*b| = |a] + |b] = p(4,).

If m = n and T(A4;) = UA;'V, then we can show that b(T(4;)) = 1 and
p(T(A;)) = |a| + |b] by the similar method as above.

Hence (U, V)-operator preserves the perimeter of each Boolean matrix of
Boolean rank 1.

Case 2. Now, consider arbitrary matrix A € M, ,(B) and its rank 1
decompositions of A such that A = Zle A;. Since

i=1 i=1

is a rank 1 decomposition of T'(A) and p(UA;V) = p(4;) from Case 1, we have

p(T(4))
= p(UAV)

|
o

p(UAV) | Z UAV is a Boolean rank ldecomposition of U AV}

1=1

||M?r nMa-

k
i) Z A; is a Boolean rank 1 decomposition of A}

i=1

= p(4).
Thus (U, V)-operators preserve the perimeter of each Boolean matrix in
M, » (B). 0O

Lemma 2.1. If T : M,, ,(B) = M, »(B) is a linear operator which preserves
Py, then there exists a mapping f : E — E such that for A = (a;;), T(A) =

Yie1 gt @i f(Bi)-
Proof. Since PP is the set of all cells in M, ,, (B), the lemma holds. O
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Lemma 2.2, If A is a Boolean matriz of perimeter 4, then one of the followings
holds:

(1) t(A) =1 and A is a sum of three collinear cells,

(2) t(A) =2 and A is a sum of two non collinear cells,

(3) A is a sum of four cells lying in the intersection of two rows and two
columns.

Proof. Tt is obvious from the definition of perimeter. O

Lemma 2.3. For the elements of Py, we have the following structures:

(1) The elements of Py are the sum of two cells in one line.

(2) The elements of Ps with fewest number of nonzero entries are the sum
of two cells in one line and another one cell not in that line.

(3) If k = 2l for any I < m, then the elements of Py, with fewest number
of nonzero entries are the sum of | cells which lie on a generalized
diagonal. The sum of these | nonzero entries has term rank .

4 If k> 7, k=2l+1 for any | < m, then the elements of P with
fewest number of nonzero entries are the sum of [ + 1 cells, | of which
have nonzero entries only on a generalized diagonal and the other cell
collinear with at least one of the first | cells. The sum of these | 4+ 1
nonzero entries has term rank [.

Proof. Tt is trivial from the form of Boolean matrices with fewest number of
nonzero entries in Py. 0

Lemma 2.4. Let A be a Boolean matriz with term rank . Then
(1) if A is the sum of | cells, then p(A) = 21,
(2) if A is the sum of L + 1 cells, then p(A) = 21 + 1;
(3) if A is the sum of I + 2 cells, then p(A) =2l or 21 + 2.

Proof. For (1) and (2), they are obvious.
For (3), let A be the sum of | + 2 cells, and ¢(4) = I. Without loss of

generality we may assume that a;; # 0 for ¢ = 1,...,l. Then it suffices to
consider three cases:
A=hae[1 0] & 0(m—1),(n-1-2)

1
11

A2 = IlAQ D [ 1 1 ] ®O(m—l),(n——l)’
1
1

1

A3=I[_2@[0

0

1 } & O(m—1),(n—1-1)>

where the entries of empty positions are zeros, and 0, is the s x ¢ zero matrix.
Then p(A;) =2(1 - 1) +4 =21+ 2, p(As) = 2(l = 2) +4 = 2] and p(4;) =
20-2)+2-3=20+2. 0
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Lemma 2.5. Suppose T : M, », (B) = M., (B) is a linear operator defined by
T(A) =320 305 aijf(Eij) for some function f : B — E. If T preserves Py,
for a k with4 <k <2m+ 1, then f is bijective.

Proof. Case 1) k =2l for a ] with 2 <1 < m. Suppose that f is not bijective.
Then there are two cells E; ; and E,; such that f(E;;) = f(E,,). If these
cells are not collinear then there is an element, X, of P, with fewest entries
which dominate E; ; and E, ;. But then, T(A) cannot be an element of P,
since it has fewer nonzero entries than those of A. Thus, E;; and E,; are
collinear. Without loss of generality we may assume that f(E; 1) = f(E12).
Now, for any ¢ > 2, Eyy1 + E1p + Erg + Eap + -+ + Ej_1;-1 has perimeter
k and its image has at most [ cells. Since T preserves Pr, T(E1; + E12 +
Eig+Eys+---+ Ei_1;-1) has perimeter ¥ and must have at least [ cells
by Lemma 23(3) Thus, T(El,l + E1’2 + E17q + E272 + -+ El—l,l—l) has
exactly [ cells and has perimeter k¥ = 2/. By Lemma 2.3(3), T(E11 + Er12 +
Eig+Ess+---+ Ei_1,-1) has term rank /. Without loss of generality we
may assume that f(El,l) = E171,f(E272) = EQ’Q, .. -;f(El—l,l—l) = El—l,l—l
and that for each ¢ > 3, f(E: 4) = Ey, for some u,v > [. Further the set of
all cells {f(E1,4)|g > 3} lie in one line. If not, say, f(E13) + f(E14) has term
rank 2, then T(E171 + E173 + E1,4 +Eyp+ - + El—l,l-—l) isasumof [ +1
cells of term rank [ 4+ 1, whose perimeter must be k + 2 by Lemma 2.3(3), a
contradiction since p(Fy 1 + E1 3+ E1 4+ E20+--+ Ej_1;-1) = k. But then,
T(Eign+ B3+ Eia+Eyp+---+F_1; 1) dominates Ey 1, Es9,...,Ej_1 -1
and two cells E, ,, + Ey .y, Or Ey, » + Ey, o, with uw,u;, us,v,v1,v9 > I. This
must have perimeter k = 21, thus v; = vy or u; = us. It follows that for some
fixed u, v, f(El,q) = Eu,v for all q Z 3. But then, T(E1,3 +E1’4 +E1’5 +E2,1 +
E3 94+ Fy 4+ -+ E;_1 ;1) dominates at most [ -1 cells and hence has perimeter
less than k, while p(E1,3 + E1,4 + E1,5 + Eg’l + E3’2 + E4,4 +---+ El—l,l—l) =k,
a contradiction. Therefore f is bijective.

Case 2) k =20+ 1 for a l with 2 <1 < m. Suppose that f is not bijective.
Then there are two cells E; ; and E, ,; such that f(E; ;) = f(E,s). By Lemma
2.3 there is an element, A, of P, of minimum nonzero entries which dominates
E;; and E, . But then, T'(A) cannot be an element of P, since it has fewer
nonzero entries than those of A. Thus f is bijective. O

Lemma 2.6. If T : My, , (B) = My . (B) is a linear operator which preserves
Py and Py, for a k with 4 < k < 2m + 1, then T maps lines to lines.

Proof. Case 1) k = 2l for a l with 2 < I < m. Since T preserves perimeter
2, by Lemma 2.1, there is a mapping f : E — E such that for 4 = (a,;),
T(A) = 32, >0 ai;f(Ei;). By Lemma 2.5, f is bijective. If T does not
preserve lines, since f is bijective, there are two cells not lying on one line and
whose images do lie on one line. Without loss of generality, we may assume
T(Eyy + E»p) lie on the same line. But then, Ei; + Fss + -+ + Ej; has
perimeter 20 = k while T(E; 1 + Ea2 + --- + Ey ;) is the sum of | cells of term
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rank at most [ —1 and consequently has perimeter less than 2I, a contradiction.
Thus T maps lines to lines.

Case 2) k =20+ 1for al with 2 <[ < m. Since T preserves perimeter
2, by Lemma 2.1, there is a mapping f : E — E such that for A = (a,;),
T(A) =310 3i-1 ai; f(Ei ;). By Lemma 2.5, f is bijective.

Suppose that T does not preserve lines. Then without loss of generality
we may assume that T'(E), + E;2) has term rank 2. But then T(E;; +
Eio+FEsa+---+ E,)is asum of [ + 1 cells and must have perimeter 21 + 1
since p(Ey1 + E12 + Ea2 + -+ Eyy) = 2l + 1. That can only happen if
T(Eyg+ Ei12+ Es2+---+ Eyy) has term rank [. Let A be the sum of the
lcellsin {Ey1,E13,Ez2,...,E;} which includes E;; and E; » whose image
has term rank . Then T(A + Ey 3 + Ejy 4) is the sum of [ 4+ 2 cells of term
rank [ or more. By Lemma 2.4 the perimeter of T(A + E; 3 + Ej 4) is either
21, 2042, 21+ 3 or 2] + 4, while the perimeter of A+ Ey1 3+ E14is 2l +1 =k,
a contradiction. Thus T maps lines to lines. ]

Theorem 2.2. IfT : M, »,(B) = My, .(B) is a linear operator which preserves
Py and Py, for a k with 4 <k <2m+ 1, then T is a (U,V)-operator.

Proof. By Lemmas 2.1 and 2.5, T induces a bijection on the set of cells. By
Lemma 2.6, T preserves lines. These two facts imply that T maps rows to
rows and columns to columns or rows to columns and columns to rows (when
m = n). It easily follows that there exist invertible matrices U and V' of orders
m and n respectively, such that T(A) = UAV for all A € M, ,(B) or m = n
and T(A) = UA'V for all A € M, ,,(B). Therefore T is a (U, V)-operator. O

Theorem 2.3. Let T : M, n,(B) = M,, ., (B) be a linear operator. Then the
following are equivalent:

(1) T preserves the perimeter of Boolean matrices;

(2) T preserves Py and P, (4 < k < 2m + 1) of Boolean matrices;

(3) T is a {U,V)-operator.

Proof. Tt is immediate that (1) implies (2). By Theorem 2.2, (2) implies (3).
By Theorem 2.1, (3) implies (1). O

Now, we characterize those linear operators which preserve P, and P;. In
the following theorem we shall use the notation R; to denote Z;LZI E;; and
C; to denote Y -, E; ;, that is, R; is the matrix with ones in the i*" row and
zeros elsewhere, and C; is the matrix with ones in the j** column and zeros
elsewhere.

Example 2.2. Consider a linear map T on M, ,(B) with 3 < m < n such
that
a1 @2 e Qi Yiibii Xilibiinn o Xlibiienon
0 0

T a2 Az2 ... Qan 0

Anal Am2 -+ Qmn 0 0 0



362 SEOK-ZUN SONG, KYUNG-TAE KANG, AND HANG KYUN SHIN

where b;; = a;x with j = k (mod n) and 1 < k < n. Then T maps each
row into a row (the first row) and each column into a row (the first row).
Moreover, T' preserves perimeters 2,3,...,n + 1 of Boolean matrices. But T is
not a (U, V)-operator. Moreover the image of T' is a line and when restricted
to any line is bijective.

Theorem 2.4. IfT : M, ,(B) = My, »(B) is a linear operator which preserves
Py and P, then either T is a (U, V)-operator, or the image of T is dominated
by a single row (or column if m = n) and T restricted to any line is injective.

Proof. By Lemma 2.1, T(E; ;) = E, ;. Now, if T does not map lines to lines,
then there is a matrix which is the sum of a pair of cells on one line and whose
image has term rank 2. But the sum of two collinear cells has perimeter 3 while
the sum of two non collinear cells has perimeter 4. Thus lines are mapped to
lines. Further, the sum of two collinear cells, which has perimeter 3, cannot be
mapped to a single cell, which has perimeter 2, hence, T restricted to any line
is injective.

Suppose T' is not a (U, V)-operator. Then, since lines are mapped to lines,
either a row and a column are mapped into the same row, a row and a column
are mapped into the same column, two rows are mapped to the same row (or
column if m = n), or two columns are mapped to the same row(or column if
m = n).

If two rows are mapped into the same row, we may assume that T(R;) < Ry
and T(R;) < R;. Then, since T(E1; + E» ;) < R; we may assume that
T(Ey ;) = Ei; and T(E, ;) = Ei 2. Now, since T(Ey,; + E; ;) must have
perimeter 3 for any 2 < i < n, T(E;;) = Ei % or T(E; ;) = E, for some k.
If T(Ei,j) = Ek,l; then T(Ei’j + E2,j) = Ek,l + E’1’2 for some 2 S k S m,
but Ey; + Iy has perimeter 4, a contradiction. Therefore, we have that
T(C;) < Ry for all j, that is T'(E; ;) < Ry for all 4,j. Now, since no two cells
dominated by a line can be mapped to the same cell, we have that T is injective
if T is restricted to any line.

If a row is mapped to a column, we must have that m = n, so that, if m =n
and two columns are mapped to a column, then the same arguments apply as
for rows above.

If a row and a column are mapped to a row, say, T(R;) < Ry and T(C}) <
Ry, then T(R;) and T'(C;) are dominated by the same line since T'(Ey ; + E; ;)
is dominated by the same line as T(E; 1 + E; ;). Again we can conclude that
the image of T is dominated by R;. As above, the mapping T is one of those
described.

The other cases are similar. O

Thus we have characterized the linear operators that preserve the perimeters
of Boolean matrices.
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