ON A CONJECTURE OF S. ELLIS CONCERNING THE NON-EXISTENCE OF JACK FIELDS

VIDHYĀNĀTH K. RAO

ABSTRACT. We prove that a full jack field does not exist on the sum of a trivial bundle and the canonical bundle on $G_{2,4}$, the Grassmanian of 2-planes in 4-space.

1. Introduction

Fix a positive integer n. An ordered orthogonal k-jack in n-space is a k-tuple $\langle L_1, \ldots, L_k \rangle$ of one dimensional subspaces of \mathbb{R}^n which are pairwise orthogonal to each other. As we will deal only with orthogonal jacks in this paper, we will drop the adjective "orthogonal" from now on. An unordered k-jack is a set $\{L_1, \ldots, L_k\}$ of k one dimensional subspaces which are pairwise orthogonal to each other.

The set $J_{(k),n}$ of ordered k-jacks is a closed subset of the k-fold product of the (n-1)-dimensional real projective space. The set $J_{\{k\},n}$ of unordered k-jacks is the quotient of $J_{(k),n}$ by the evident action of Σ_k , the symmetric group on k letters. We give it the quotient topology. Note that the orthogonal group O_n acts on both spaces.

Unless otherwise specified, we will assume that all spaces are paracompact and have the homotopy type of CW-complexes.

Given an n-dimensional vector bundle with fiberwise inner product over a space B, we can take the space of ordered or unordered jacks over each fiber to get the associated jack bundles. If the vector bundle is associated with a principal O_n -bundle ξ , then these can be idenified with $\xi[J_{(k),n}] = E \times_{O_n} J_{(k),n} \to B$ and $\xi[J_{\{k\},n}] = E \times_{O_n} J_{\{k\},n} \to B$ respectively, where E is the total space of ξ . An ordered k-jack field of ξ is a cross-section of $\xi[J_{(k),n}]$ and an unordered k-jack field is a cross-section of $\xi[J_{\{k\},n}]$.

Ellis [1] considered the question of continuity of maps that would form factor analysis as defined in statistics and showed that it involves the question of finding continuous n-jack fields in n-vector bundles. Then he considered this question for ζ_n , the Whitney sum of the (n-2) dimensional trivial bundle and

Received February 26, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 57R25; Secondary 55R22, 62H25. Key words and phrases. jack fields.

the canonical 2-bundle on $G_{2,4}$, the Grassmanian of 2-planes in \mathbb{R}^4 and proved the following result.

Theorem 1.1. For any $n \geq 2$, ζ_n does not have a global ordered n-jack field. Also, if n = 2 or n = 3, then ζ_n does not have a global unordered n-jack field.

He conjectured that the second result above is true for any n. In this note, we will show that this is true, that is we prove

Theorem 1.2. Suppose that $n \geq 3$. Then ζ_n does not have a global unordered n-jack field.

2. Proof

Note that the actions of O_n on $J_{(k),n}$ and $J_{\{k\},n}$ are transitive. Let D_k be the subgroup of diagonal matrices in O_k , and let B_k be the subgroup of O_k generated by D_k and the permutation matrices (so that $B_k \cong \Sigma_k D_k$). Then the isotropy subgroup of the ordered jack of first k coordinate axes in \mathbb{R}^n is $D_k \times O_{n-k}$ and the isotropy subgroup of the corresponding unordered jack is $B_k \times O_{n-k}$. This gives us the next lemma.

Lemma 2.1. A an O_n -space, $J_{(k),n}$ is homeomorphic to $O_n/(D_k \times O_{n-k})$, and $J_{\{k\},n}$ is homeomorphic to $O_n/(B_k \times O_{n-k})$.

Lemma 2.2. Let ξ be a principal O_n bundle over a space B, and let $f_{\xi}: B \to BO_n$ be its classifying map. Then $\xi[J_{\{k\},n}]$ has a cross-section if and only if f_{ξ} factors through $B(B_k \times O_{n-k})$.

Proof. This follows from Theorems 6.2.3 and 6.5.1 in [2].

Let i be the inclusion of O_2 into O_n .

Lemma 2.3. If n > 3, the composition

$$G_{2,4} \to G_{2,\infty} = BO_2 \xrightarrow{Bi} BO_n$$

induces a non-trivial homomorphism on π_2 's.

Proof. We have the following diagram where the rows are fibration sequences:

Consider the following portion of the homotopy long exact sequences of the above fibrations, and the induced homomorphisms:

$$\pi_2 G_{2,4} \longrightarrow \pi_2 G_{2,4} \longrightarrow \pi_1 O_2 \longrightarrow \pi_1 G_{2,4} = 0$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$\pi_2 E O_2 = 0 \longrightarrow \pi_2 B O_2 \stackrel{\cong}{\longrightarrow} \pi_1 O_2 = \mathbb{Z} \longrightarrow \pi_1 E O_2 = 0$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$Bi_* \downarrow \qquad \qquad \qquad \downarrow$$

$$\pi_2 E O_n = 0 \longrightarrow \pi_2 B O_n \stackrel{\cong}{\longrightarrow} \pi_1 O_n = \mathbb{Z}/(2) \longrightarrow \pi_1 E O_n = 0$$

[See, for example, [2, pp. 91–93] for the identification of the groups made above.]

The fact that i_* is an epimorphism and the exactness of the rows of the diagram above imply that the composition $\pi_2 G_{2,4} \xrightarrow{\pi}_2 BO_2 \xrightarrow{Bi_*} \pi_2 BO_n$ is an epimorphism.

Proof of Theorem 1.2. Suppose that ζ_n has a global n-jack field. Then its classifying map f must factor via BB_n . The latter is a $K(\pi,1)$, and so has a trivial π_2 . So homorphism on π_2 induced by f is trivial, contradicting the previous lemma.

Remark 2.4. From a topological point of view, existence of k-jack fields, for $k \le n-2$, on n-dimensional vector bundles is a more interesting question. This will be studied elsewhere.

References

- S. P. Ellis, Instability of statistical factor analysis, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1805-1822.
- [2] D. Husemoller, Fibre Bundles, 2nd Edition, Graduate Texts in Mathematics, No. 20, Springer-Verlag, New York, 1975.

DEPARTMENT OF MATHEMATICS
THE OHIO STATE UNIVERSITY AT NEWARK
NEWARK OH 43055, U.S.A
E-mail address: rao.3@osu.edu