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A CHARACTERIZATION OF THE VANISHING OF THE
SECOND PLURIGENUS FOR NORMAL SURFACE
SINGULARITIES

KoUKICHI WADA

ABSTRACT. In the study of normal (complex analytic) surface singu-
larities, it is interesting to investigate the invariants. The purpose of
this paper is to give a characterization of the vanishing of 2. In [11],
we gave characterizations of minimally elliptic singularities and rational
triple points in terms of the second plurigenera d2 and 2. In this pa-
per, we also give a characterization of rational triple points in terms of a
certain computation sequence. To prove our main theorems, we give two
formulae for §» and 2 of rational surface singularities.

1. Introduction

Let (X, z) be a normal (complex analytic) surface singularity, 7 : (X,A) =
(X, z) the minimal good resolution of the singularity (X, z), i.e., the smallest
resolution for which A consists of non-singular curves intersecting transversally,
with no three through one point. We always assume that X is Stein and
sufficiently small. The geometric genus of (X,z) is defined by py(X,z) =
dime H 1(5(:, €'5). This number has been studied from many viewpoints (e.g.,
[1], [3], [4], and so on). In particular, some numerical characterizations of the
vanishing of p, were given. In Section 2, we recall those results. The following
two kinds of typical plurigenera are defined by Knéller [2] and Watanabe [13]
respectively as follows:

Y (X, 2) = dime T(X — A4, 65 (mK))/T(X, Oz (mK)),

(X, 2) = dime D(X — 4, O (mK))/T(X, Oz (mK + (m — 1)4)),
where m € N and K denotes the canonical divisor on X. Note that Dg =1 =
d) < 2 < 2. Knoller [2] proved that (X, z) is a rational double point if and
only if v, (X,z) = 0 for all m € N. Watanabe [13] proved that (X,z) is a

quotient singularity if and only if 6,,(X,z) = 0 for all m € N. Okuma [8]
obtained a formula for 8, of normal surface singularities. He [7] also gave a
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formula for d; of Gorenstein surface singularities and proved relations among
the invariants d2, py, , 7 (Milnor number and Tjurina number of (X, z)) and
the modality. We [11] gave characterizations of minimally elliptic singularities
and rational triple points in terms of the second plurigenera 2 and ;. In
particular, we have that (X,z) is a rational double point or a rational triple
point if and only if v, (X,z) = 0. Concerning d;, we do not have the fact. In
general, it is difficult to determine all the minimal (or minimal good) resolution
graphs of normal surface singularities with d; = 0 (cf. [10]). Our purpose is to
give a topological criterion (on the minimal resolution) for the vanishing of the
second plurigenus ds. N

Let (X,z) be a normal surface singularity and 7 : (X,A) — (X,7) the
minimal resolution and 4 = (J;._, 4; the decomposition of the exceptional set
A into irreducible components. We define the unique smallest positive cycle
“W?” satisfying the property (—K —W)-A; > 0 for all A;. The positive cycle W
can be computed inductively as in [3]. We prove the following main theorems.

Theorem 1.1. In the situation above, 62(X,z) = 0 if and only if (X,x) s
rational and for any (or some) computation sequence {W;}._, from A to W,
we have (K +W;_1)- A;; =1 for j > 0, where Wy = A.

The following theorem is a characterization of rational triple points in terms
of the computation sequence.

Theorem 1.2. In the situation above, (X,x) is a rational triple point if and
only if (X, z) is rational and there ezists a computation sequence {W;}._, from
A;, to W with the property (K + W;_1)- A;, =1 for j > 0, where Wy = 0.

2. Preliminaries

Let 7 : (X, A) = (X, z) be a resolution of a normal surface singularity and
A = J;—, A; the decomposition of the exceptional set 4 into irreducible com-
ponents. A cycle D is an integral combination of the A;, i.e., D = Z?:l d; A;
with d; € Z, where Z denotes the rational integer. There is a natural partial
ordering between cycles defined by comparing the coefficients. A cycle D is
said to be effective if d; > 0 for all . In particular, a cycle D is said to be
positive if D is effective and D # 0. For any two positive cycles V and W,
there exists an exact sequence

0— Ow ®0}7 ﬁi(—V) — ﬁv_{_w - Oy — 0.

Notation 2.1. Let F be a sheaf of &3-modules, D a divisor on X and E an
effective cycle on X. We use the following notation: & (D) = & ®o5 O3(D),
Fg = F ®¢, Op, H(F) = H(X,F), Ha(F) = H'A(X,F), W(F) =
dime H(F) and his(F) = dime H 4(£). i E = 0, then we put Zg = 0.
We denote by K the canonical divisor on X. The Riemann-Roch theorem
implies for any positive cycle V and any invertible sheaf % on X, that x(Oy) =



A CHARACTERIZATION OF THE VANISHING OF THE SECOND PLURIGENUS 223

K (Oy) — R (Oy) = -V - (V + K)/2 and x(6y ®o, F) = hO (O ®oy F) —
h(Oy ®o, F) = F-V+x(0y). There exists the unique smallest positive cycle
Z satistying Z-A; < 0for all ¢ ([1], p.131). The cycle Z is called a fundamental
cycle. The fundamental cycle can be computed inductively as follows [3]: put
Zo = A;,. Given Zj there are two possibilities:
(1) if there is an A;, ,, such that Z, Ay, > 0, then put Zpyy = Zp+A
(2) otherwise we are finished and the fundamental cycle Z = Z.

g1

For a computation sequence {Z Hofor Z , by the Riemann-Roch theorem, we
p JJ3=0

have
I+1 141

p(Z) = ZP(Ai,) + Z(Zj—1 “Ag - 1),
=0 =1

where we put p(V)=1 — x(&v) for any positive cycle V and 23:1{' -} =0.
Artin [1] proved that (X,z) is rational (i.e., p, = 0) if and only if p(Z) = 0
and that if (X, z) is rational, then we have the multiplicity mult(X,z) = — Z?
and the embedding dimension emb dim(X, z) = —Z?+ 1. Laufer [3] proved the
following topological criterion.

Theorem 2.1 ([3], Theorem 4.2). The singularity (X,z) is rational if and
only if each component A; of A is a non-singular rational curve and for any
(or some) computation sequence {Zj}i.g) for Z, we have Z;_1 - A;;, =1 for
Jj>0.

Hence rational surface singularities are characterized by their weighted dual
graphs. We use the following theorem.

Theorem 2.2 ([7], Corollary 2.5). Let (X,z) be a Gorenstein or a Du Bois

singularity and 7 : (X, A) = (X, z) the minimal good resolution. Then we have
62(X,z) =R (O3 (—K — A)).

Note that rational surface singularities are Du Bois.

3. A characterization of the vanishing of the second plurigenus

We follow the notation of the preceding section. The purpose of this section
is to give a formula for §, of rational surface singularities and a topological
criterion for the vanishing of d;. For a rational surface singularity, we have
relations among ds, mult(X, z) and emb dim(X, z) as follows:

Proposition 3.1. Let 7 : ()?,A) — (X, x) be the minimal resolution. Then
we have 65(X,z) > mult(X,z) - K- A—2 =embdim(X,z) - K - A — 3.

Proof. Since (X, z) is rational, we can construct a computation sequence Zg,
e Zy = A;---;ZI—H = Z, where Zy = Aig;ZI = Zy +Ai1,...,Zk = Zp_; +
Ay Z1v1 = Zy+ A, with the property Z;_4 +A;; =1 by Theorem 2.1. If
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Z = A, then it is obvious. Hence we can assume that Z # A. For each j > k,
we have the exact sequence

0 Og(~K — Z;) = Og(—K — Z;_1) = Oa, (K = Z;_1) > 0.
By the Riemann-Roch theorem, we have inductively
M (Og(-K — Z;_1)) =h' 0z (-K — Z;)) + K - Ay,
Since mult(X,z) — 2 = embdim(X,z) - 3 = K - Z, we have
82 (X, z) > mult(X,z2) - K-A~-2=embdim(X,z) —K-A-3
by Theorem 2.2. O

Corollary 3.2. Let (X,z) be a normal surface singularity and = : ()?,A) -
(X,z) the minimal resolution. If 65(X,z) = 0, then we have mult(X,z) =
K-A+42 and embdim(X,z) =K -A+3.

Proof. Since p, < d2, (X,x) is rational. The assertion follows from Proposi-
tion 3.1. O

Let (X,z) be a normal surface singularity and 7 : (X,A) = (X,z) the
minimal resolution. Since K is m-nef, by the well-known vanishing theorem, we
have the exact sequence

0 - HY(03(2K)) = HY(X — 4, 03(2K)) — H' 4(05(2K)) = 0,
Le., 12(X,z) = h'(O5(-K)) by the Serre duality.

Proposition 3.3 (cf. [11], Lemma 4.3). In the situation above, y2(X,z) =0
if and only if (X,x) is a rational double point or a rational triple point.

Proof. Assume that y2(X,z) = 0. Consider the exact sequence
0— ﬁ)‘z(—K - Z) — ﬁi(—K) - ﬁz(—K) — 0.

Since 1o(X,z) > h'(Oz(-K)) > K- Z — x(0z) and p; < 7, (X,z) is a
rational double point or a rational triple point. If (X, z) is a rational double
point, then 75(X,z) = 0. Hence it is enough to prove that v (X,z) = 0 if
(X, z) is a rational triple point. But we may prove the following if we use the
argument above.

(i) H'(Oz(-K)) =0,

(ii) H' (O3 (-K - Z)) = 0.

(i) Since (X, z) is a rational triple point, there exists a non-singular rational
curve A;, such that K - A;; = 1. We can construct a computation sequence
Zo = Aigy- .y Zp = Ze—1 + Aiyy .., Zip1 = Z1 + Ay, = Z with the property
Z;_y - A;; =1 by Theorem 2.1. Consider the exact sequences for k > 1,

0— ﬁAik (—K-— Zk_1) — ﬁzk(—K) — ﬁzk_l(—K) — 0.

Since (=K — Zp—1) - A, < —1 and —K - A;; = —1, by induction, we have
H®(Oz(-K)) = 0.
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(ii) By the theorem on formal functions, we have

H(05(~K = 2)) = lm B (Op(~K - 2)).
D>0
Hence we may prove that H(6p(—K — Z)) = 0 for all positive cycles D. In
the situation above, consider the infinite sequence: Zp = 44,,...,Z%,..., 4 =
VRNV T/ S AN /AN /A ¥/ S/ N ¥/ /AW (£ 0 ) VAN
Consider the exact sequences for £ > 1

0 O, (-K=Z~tZ—2Zk1) = O1z12,(-K - Z)

= Oizvz, (K —2Z) = 0.

Similarly, by induction, we have h!(&;z. 2, (~K —Z)) = 0 for all ¢ and k. This
fact implies H'(€p(—K —Z)) = 0 for all D. Hence we obtain the assertion. [

In general, it is difficult to determine all the minimal (or minimal good)
resolution graphs of normal surface singularities with d, = 0 (cf. [10]). Next,
we prove our main theorems. First, we have the following.

Definition-Lemma 3.4. Let (X, z) be a normal surface singularity and = :

()?, A) = (X, z) the minimal resolution. Then there exists the unique smallest
positive cycle W satisfying the property

(%) (-K-W)-A; >0 foralli.

Proof. If (X, z) is a rational double point, then we can set W = Z. Assume
that (X,z) is not a rational double point. Since the intersection matrix (4; -
Aj)1<i j<n is negative definite, there exists a unique Q-cycle Zx = 3", d;A; €
>, QA; such that —K - A; = (307 did;) - 4; for all j. Let d be the absolute
value of the determinant det(A; - A;)1<s j<n. Since 7 is minimal, we have that
(=K —dZg) - A; > 0 for all i and dZy is a positive cycle satisfying Supp
(dZkg) = A. Let W; = Y1 . d;i4; (j = 1,2) be positive cycles satisfying
the property (). Note that Supp (W;) = 4. Let di' = min{dys,das}. Let
W' =3"_, di' Ax. Assume that d;' = di;. Then we have

(-K-W) 4 = -K-4—(d'A"+Y d'As- A)
k#i
> —-K-A; - (dliAi? -+ Z digAg - Ai)
k#i
= (-K-W)-A,.
The positive cycle W' satisfies the property (*). d

The argument of the minimal property above has already been seen in Artin
[1]. In general, we have A < Z < W. The positive cycle “W” can be computed
inductively as in [3]: put Wy = A (resp. Wy = 0, Wi = 4;,). Given W;, (resp.
Wi (k > 1)) there are two possibilities:
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(1) if there is an Aj;,,, such that (—K — W}) - A;,,, <0, then put Wy =
Wi + Aik.“ 3

(2) otherwise, we are finished and W = W,

We can always construct a “computation sequence from A to W” (resp.
from A;, to W).

Lemma 3.5. In the situation above, W = A if and only if A satisfies one of
the following cases.

(1) A is a non-singular elliptic curve.

(2) A is a rational curve with a node singularity.

(3) A is a rational curve with o cusp singularity.

(4) A is a cycle of non-singular rational curves.

(5) A is a chain of non-singular rational curves of arbitrary length.

(6) A is the sum of two non-singular rational curves which have first order
tangential contact at one point.

(7) A is the sum of three non-singular rational curves all meeting transversely
at the same point.

Proof. Let t; = (A— A;)- A;. By the property (), we have 2 —t; > 2p(A;) > 0
for all¢. If t; = 0, then A = A; and A satisfies (1), {(2), (3) or (5). Assume that
1 <t; <2for all 4. Then A4; is a non-singular rational curve. If there exists
an A;, with t;; = 1, then A satisfies (5). If t; = 2 for all ¢, then A satisfies (4),

(6) or (7). The converse is now obvious. O

If A satisfies (1), (2), (3), (4), (6) or (7) (resp. (5)), then (X, z) is a minimally
elliptic (resp. cyclic quotient) singularity and d2(X,z) = 1 (resp. 0) (cf. [4],

[7])-

Proposition 3.6. Let (X,z) be a rational surface singularity and {W;}._,
a computation sequence from A to W as follows : Wy = AW, = Wy +
Aiyo. Wi =Wi_i + A, =W with the property (—K —W;_1)-A;; <0 forj >

0. Then 65(X,z) = Thuy ((K+Wjo1)- i~ 1) = (W=A)-(K+A)~X(Ow-4).
Proof. If W = A, then it is obvious by Lemma 3.5. Assume that W > A.
Consider the exact sequence
0 O3(-K-W) = 03(-K - A) » Ow_a(-K — A) > 0.
By ([5], (12.1)) and Theorem 2.2, we have
52(X,z) = h' (Ow_a(—K — A)).
Next, weset Vo = Wy — A, Vi =W, — A,...and V; = W, — A. For each 7 > 0,
we have the exact sequence
0 Oa, (-K = Wj_1) = Oy, (-K - A) = Oy;_,(-K — A) = 0.
By the Riemann-Roch theorem, we have inductively
(2) B (Bv, (=K — 4) = 1 (O, (<K — A)) + (K +W;_1) - Ay, —1)).
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(b) HY(Ow_a(—K — A)) = 0.
The first equality follows from (a). Using (b) and the Riemann-Roch theorem
again, we obtain that

62(X,z) = —x(Ow-a(-K = A)) = (W = 4) - (K + A) — x(Ow-4).
O

Theorem 3.7. Let (X,z) be a normal surface singularity. Then 63(X,z) =0
if and only if (X,x) is rational and for any (or some) computation sequence
{Wit_y from A to W, we have (K +W,;_;) “Ai; =1 for j>0.

Proof. Assume that 6,(X,z) = 0. Since p; < 8y, (X, z) is rational. If (X, z) is
a cyclic quotient singularity, then it is obvious by Lemma 3.5. If (X, z) is not
a cyclic quotient singularity, then we can construct a computation sequence
{W }”Dl) from A to W by Lemma 3.5. By Proposition 3.6, we have (K +

i 1) A;; = 1for j > 0. Similarly, we have the converse. O

Since rational surface singularities are characterized by their weighted dual
graphs, we obtain a topological criterion on the minimal resolution for the
vanishing of §;. We can consider that Theorem 3.7 is a §,-version of Laufer’s
result. Next, we show a similar formula for v; of rational surface singularities.
If (X,z) is a rational surface singularity which is not a rational double point,
then there exists a non-singular rational curve 4;, with —K - 4; < 0. Hence
we can construct a computation sequence {W;}._, from 4;, to W as follows:
Wo=0W; =Wo+ A,,..., Wi =W, + A;, =W with the property (—K —
Wij-1)-Ai; <0for j > 0. Then we obtain the following.

Corollary 3.8. In the situation above, we have the following:
() 92(X,2) = Tiey (K +Wjo) - Ay, = 1) = KW = x(0w),
(ii) 92(X,z) = 72(X,2) = K- A+ 1 (¢f. [11], Corollary 3.7).

Proof. (i) As in the proof of Proposition 3.6, we obtain the following two for-
mulae:

(¢) 2(X,x) —Z ((K+WJ 1) A - 1).
(d) v(X,z) = hl(ﬁw( K)) = —x(0w(-K)) =K -W - x(Ow).
(i) Since x(Ow) = x(Ow_4) + x(O4) — (W — A) - A, by the formula (d)
and Proposition 3.6, we have
(52()&7,1‘) - ’)’2(X,.ﬁl7) =—-K-A+ X(ﬁA)

Since (X, x) is rational, we have x(€4) = 1. Hence we obtain the assertion. [

Let (X,z) be a rational surface singularity and 7 : (X, 4) — (X,z) the
minimal resolution. Let A’ be a connected cycle such that 0 < A’ < 4. If we
contract a connected cycle A’ C X’, then we obtain a unique singular point;
this will be denoted by (X/A', p).
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Corollary 3.9 (cf. [13], Theorem 2.8). In the situation above, we have vo(X, x)
> 72(X/A,7p)‘

Proof. We may assume that 0 < A’ = Zle A < A = Zfz(fk) A; and
the singularities (X,z) and (X/A',p) are not rational double points. Since
()? /A’ p) is not a rational double point, there exists a non-singular rational
curve A;, < A’ with —K - A;; < 0. Let {Wo =0, W, = A;,,..., W, =W(A")}
be a computation sequence from A;, to W(A') with respect to the singularity
()Z' /A’,p). Continuing this process, we can construct a computation sequence
{(Wo =0,Wy = Ayy,..., W, ...,W, = W} from A;; to W. By (i) of Corol-
lary 3.8, we obtain the assertion. g

Corollary 3.10. In the situation above, if A— A’ consists of (—2)-curves, then
we have 62(X,z) > 6(X /A", p).

Proof. The assertion follows from (ii) of Corollary 3.8 and Corollary 3.9. [

Rational triple points are classified into 9 classes according to the dual graphs
in [1]. In [9], Tjurina showed that any given rational triple point can be realized
as a singularity on an explicitly described surface in complex four dimensional
space C*. In [11], we gave characterizations of rational triple points in terms
of the second plurigenera 2 and .. In this paper, we have the following.

Theorem 3.11. Let (X,z) be a normal surface singularity and 7 : (X,A) =
(X, z) the minimal resolution. Then (X,x) is a rational triple point if and only
if (X, z) is rational and there exists a computation sequence {W;}_, from A;
to W with the property (K + W;_1) - Ai; =1 for j > 0.

Proof. If (X, z) is a rational triple point, by Proposition 3.3, then y2(X,z) =0

and there exists a A;, with —K - A;, = —1. Hence we can construct any
computation sequence {W;}_, from 4;, to W. By (i) of Corollary 3.8, we
have (K + W;_1) - A;; = 1 for j > 0. Similarly, we have the converse. O

4. Application of the formulae for the second plurigenera of
rational surface singularities

By Proposition 3.6 and Corollary 3.8, we can compute the second plurigenera
of rational surface singularities. Finally, we give the following example.

Example 4.1. (1) Let (X, z) be a normal surface singularity whose weighted
dual graph is given by
An—l An—3

O——CO------ (n24)

Ay Ao Ay An_s Ao
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where Ag is a (—3)-curve. Then (X,z) is rational (see Section 2). We can
construct a computation sequence from A to W as follows:

(1) fn=4,then Wo= A, W1 =Wo+Ag =W,

(ll) if n >4, then Wy = A, Wi =Wo+A4g,.. Wp3=W, 4+4, 4=W.

By Proposition 3.6 and (i) of Corollary 3.8, we have that 6(X,z) =
72 (X,z) =L

(2) Let (X, z) be a normal surface singularity whose weighted dual graph is
given by

Az A Are

Ay Ay Ay A5 Ae Ay As Ay An

where Ag is a (—6)-curve. Then (X, z) is rational. We can construct a com-
putation sequence {W;}1, from A to W as follows: Wy = A, Wi = Wy + A,
Wo = Wi+ Ay, Ws = Wo+ As, Wy = Wi+ Ay, W5 = Wy + Ag, Ws = Wy + A7,
W7 = W@ +A14, Wg = W7 -+ ‘413, I/Vg = I/Vg + 4412, I/Vlo = Wg + A6 =W.
By Proposition 3.6 and (ii) of Corollary 3.8, we have that ds(X,z) = 3 and
T2(X,z) = 6.
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