Expression of the Heat Shock Protein Genes in Response to Thermal Stress in the Silkworm Bombyx mori

  • 발행 : 2008.03.31

초록

The expression of heat shock protein genes (Hsp 70, Hsp 40, Hsp 20.8 and Hsp 20.4) against thermal stress in silkworm Bombyx mori was performed through semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Upon exposure of silkworm to two temperature regimes ($38^{\circ}C$ and $42^{\circ}C$), significant change in the expression of Hsp gene was observed as compared to the control. Hsp 70 and Hsp 40 showed increased expression than the small heat shock protein genes Hsp 20.8 and Hsp 20.4. The Hsp 70 showed increased expression during the recovery period as compared to 1 hr thermal treatments ($38^{\circ}C$/1 hr and $42^{\circ}C$/1 hr). Whereas, Hsp 40, Hsp 20.8 and Hsp 20.4 genes showed higher expression level at initial stages that later gradually decrease during recovery period. Tissue specific expression of Hsp 70 showed variation in the level of expression amongst the tissues. The mid gut and fat body tissues showed higher expression than the cuticle and silk gland tissue. The Hsp 70, Hsp 40 gene expression was analyzed in thermotolerant (Nistari) and thermo susceptible silk worm strain (NB4D2) and results showed significant variation in their expression level. The Nistari showed higher expression of Hsp 70 and Hsp 40 genes than the NB4D2. These findings provide a better understanding of cellular protection mechanisms against environmental stress such as heat shock, as these Hsps are involved in an organism thermotolerance.

키워드

참고문헌

  1. Benchamin, K. V. and M. S. Jolly (1986) Principles of silkworm rearing, Proceedings of the seminar on problems and prospects of sericulture, S Mahalingam (Ed) India, 63-108
  2. Dahlgaard, J., V. Loeschcke, P. Michalak and J. Justesen (1998) Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Funct. Ecol. 12, 786-793 https://doi.org/10.1046/j.1365-2435.1998.00246.x
  3. Feder, M.E (1996) Ecological and evolutionary physiology of stress proteins and the stress response: the Drosophila melanogaster model. In: Johnston, I.A., Bennett, A.F. (Eds.), Animals and Temperature: Phenotypic and Evolutionary Adaptation to Temperature. Cambridge University Press, Cambridge, pp. 79-102
  4. Feder, M. E. and F. E. Hofmann (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology 61, 243-282 https://doi.org/10.1146/annurev.physiol.61.1.243
  5. Feder, M. E. and R. A. Krebs (1997) Ecological and evolutionary physiology of heat-shock proteins and the stress response in Drosophila melanogaster: complementary insights from genetic engineering and natural variation. In: Bijlsma, R., Loeschcke, V. (Eds.), Environmental Stress, Adaptation and Evolution. Birkhauser, Basel, 155-173
  6. Flanagan, S. W., A. J. Ryan, C. V. Gisolfi and P. L. Moseley (1995) Tissue-specific Hsp70 response in animals undergoing heat stress. Am. J. Physiol. 268, 28-32
  7. Gehring, W. J. and R. Wehner (1995) Heat Shock Protein synthesis and thermotolerance in cataglyphis, an Ant from the Sahara Desert. Proc. Natl. Acd. Sci. USA. 92, 2994-2998
  8. Haslbeck, M., S. Walke, T. Stomer, M. Ehrnsperger, H. E. White, S. Chen, H. R Saibil and J. Buchner (1999) Hsp 26: A temperature-regulated chaperone. EMBO J. 18, 6744- 6751 https://doi.org/10.1093/emboj/18.23.6744
  9. He, Y. and T. Oshiki (1984) Study on crossbreeding of a robust silkworm race for summer and autmn rearing a low latitude area in china. J. Sric. Sci. Jpn. 53, 320-324
  10. Hightower L. E(1991) Heat Shock Protein, Chperones and proteotoxicity. Cell, 66, 191-197 https://doi.org/10.1016/0092-8674(91)90611-2
  11. Kelley, W. L (1998) The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23, 222-227 https://doi.org/10.1016/S0968-0004(98)01215-8
  12. Krishnaswamy, S (1978) New technology of silkworm Rearing Bulletin, central sericultural Reasearch training Institute Mysore
  13. Li, G. C. and J. Y. Mak (1989) Re-induction of hsp 70 synthesis: an assay for thermotolerance. Int. J. Hypertherm. 5, 389- 403 https://doi.org/10.3109/02656738909140466
  14. Lindquist, S (1993) Auto regulation of the heat shock response Translational regulation of gene expression 2 (ed J. Ilan), pp 279-320. New York: plenum press
  15. Lohamann, C. M. F and L. M. Riddiford (1992) The Heat Shock response and Heat sensitivity of Bombyx mori. Sericologia 32, 533-537
  16. Mayer, M. P., D. Brehmer, C. S. Gassler and B. Bukau. (2001) Hsp 70 chaperone machines. Adv. Protein Chem. 59,1-44 https://doi.org/10.1016/S0065-3233(01)59001-4
  17. Morimoto, R. I (1993) Cells in stress: Transcriptional activation of heat shock genes. Science 259, 374-382
  18. Morimoto, R. I., A. Tissiers and C. Georgopoulos (1994) (eds) The biology of heat shock protein and molecular chaperones. Cold spring Harbor, NY: Cold spring Harbor Laboratory press.
  19. Moromoto, R. I., A. Tissieres and C. Georgopoulos (1990) The stress response, function of the Proteins, and perspectives, Stress Proteins in Biology and Medicine, Cold Spring Harbor lab. 1-32
  20. Nagaraja, G. M and J. Nagaraju (1995) Genome fingerprinting of the silkworm Bombyx mori using random arbitrary primers. Electrophoresis 16, 1633-1638 https://doi.org/10.1002/elps.11501601270
  21. Nollen, E. A., J. E. Brunsting, H. Roelofsen, L. A. Weber and H. H. Kampinga (1999) In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol. Cell. Biol. 19, 2067-2079
  22. Omana J. and K. P. Gopinathan (1995) Heat shock response in mulberry silkworm races with different thermotolerances. J. Biosci. 20, 499-513 https://doi.org/10.1007/BF02703533
  23. Ritossa, F. (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571-573 https://doi.org/10.1007/BF02172188
  24. Ritossa, F. (1996) Discovery of the heat shock response. Cell Stress and Chaperones 1, 97-98 https://doi.org/10.1379/1466-1268(1996)001<0097:DOTHSR>2.3.CO;2
  25. Sun, Y. and T. H. Mac Rae (2005) Small heat shock proteins: molecular structure and chaperone function. Cellular and Mol. Life Scie. 62, 2460-2476 https://doi.org/10.1007/s00018-005-5190-4
  26. Ul,Masov, K. A., S. Shammakov, K. K. Karaev and M. B. Evegen'ev (1992) Heat Shock Proteins and thermoresistance in lizards. Proc. Natl. Acad. Sci. USA. 89,1666-1670
  27. Ul'masov, Hh. A., O. G. Zatsepina, Rybtsov, SA., et al., Certain Aspects of status of heat Shock System Components in Lizards from Various Econichessl, Izv.Ross.Akad.Nauk.Ser. Biol. 1997 2 pp. 133-141
  28. Vasudha, B. C. H. S. Aparna and H. B. Manjunatha (2006) Impact of Heat Shock protein expression biological and commercial traits of Bombyx mori. Insect Science 13, 243- 250 https://doi.org/10.1111/j.1744-7917.2006.00090.x
  29. Welch, W. J. (1990) The mammalian stress response: cell physiology and biochemistry of stress proteins. In: Stress Proteins in Biology and Medicine (ed. R. Morimoto, A. Tissieres and C. Georgopoulos), Cold Spring Harbor Press, New York. 223- 278
  30. Welte, M. A., J. M. Tetrault, R. P Dellavalle, and S. L. Lindquist (1993) A new method for manipulating transgenes: engineering heat tolerance in a complex, multicellular organism. Current Biology 3, 842-853 https://doi.org/10.1016/0959-440X(93)90194-P
  31. Yost, H. J. and Lindquist, S. (1986) RNA splicing is interrupted by heat shock protein and is rescued by heat shock protein synthesis. Cell 45, 185-193 https://doi.org/10.1016/0092-8674(86)90382-X