DOI QR코드

DOI QR Code

Simulation for Characteristics Analysis of Grid-connected Wind Power Generation System on MATLAB/Simulink

MATLAB/Simulink에서 계통연계 풍력발전시스템의 특성해석에 대한 시뮬레이션

  • 노경수 (동국대학교 전기공학과) ;
  • 안해준 (고려대학교 대학원 전자전기공학과)
  • Published : 2008.08.31

Abstract

The paper presents a modeling of the grid-connected wind turbine generation system on MATLAB/Simulink and aims to perform simulations for analysis of the system's characteristics. It performs a pitch regulation for control of the wind generator's output with respect to wind speed variation, and presents a relationship between interconnecting transformer's connections and fault current by reviewing the variations of fault current according to transformer connections in a grid-connected wind power generation system. It also investigates the effect of grounding methods of the interconnecting transformer's neutral point on fault current variations. The simulation results show the differences of fault currents, voltages and generator's characteristics for a line-to-ground fault according to interconnecting transformer's four different connections, and the differences of fault currents of the system according to grounding methods of the transformer neutral point. Therefore, the case studies demonstrate the effectiveness of the proposed simulation model on Simulink.

본 논문은 HATLAB/Simulink에서 계통연계 풍력발전시스템의 특성해석을 위한 모델링을 제안하여 시뮬레이션을 수행한다. 이를 위해 풍속의 변화에 따른 발전기의 출력제어를 위해 피치제어를 수행하며, 연계변압기의 결선방법에 따른 고장전류의 변화를 살펴봄으로 하여 연계변압기의 결선방법과 고장전류와의 상관관계를 제시하였다. 아울러 풍력발전시스템의 연계변압기 중성점접지방식이 고장전류에 미치는 영향을 살펴본다. 계통에서의 1선 지락고장에 대해 연계변압기의 4가지 결선방식의 차이에 따른 고장전류, 전압 및 발전기의 특성 변화를 확인할 수 있었으며 중성점 접지방식의 차이에 따른 고장전류의 변화를 확인하였다. 사례연구를 통하여 제안한 Simulink에서의 시뮬레이션 모델의 효용성을 입증하였다.

Keywords

References

  1. R. Zavadil, N. Miller, A. Ellis, E. Muljadi, 'Making Connections', IEEE Power&Energy, Vol. 3, 2005, pp. 26-37
  2. Z. Chen, Y. Hu, F. Blaabjerg, 'Stability Improvement of Induction Generator-based Wind Turbine Systems', IET Renew. Power Gener. Vol. 1, 2007, pp. 81-93 https://doi.org/10.1049/iet-rpg:20060021
  3. A. Mullane, G. Lightbody, R. Yacamini, 'Wind-Turbine Fault Ride-Through Enhancement', IEEE Transactions on Power Systems, Vol. 20, 2005, pp. 1929-1937 https://doi.org/10.1109/TPWRS.2005.857390
  4. E. Muljadi, C.P. Butterfield, B. Parsons, A. Ellis, 'Effect of Variable Speed Wind Turbine Generator on Stability of a Weak Grid', IEEE Transactions on Energy Conversion, Vol. 22, 2007, pp. 29-36 https://doi.org/10.1109/TEC.2006.889602
  5. E. Muljadi and C.P. Butterfield, 'Pitch-Controlled Variable Speed Wind Turbine Generation', IEEE Transactions on Industry Applications, Vol. 37, No. 1, Jan./Feb. 2001, pp. 240-246 https://doi.org/10.1109/28.903156
  6. J.G. Slootweg, S.W.H. de Haan, H. Polinder, W.L. Kling, 'General Model for Representing Variable Speed Wind Turbines in Power System Dynamics Simulations', IEEE Transactions on Power Systems, Vol. 18, No. 1, Feb. 2003, pp. 144-151
  7. A.D. Hansen, P. Sorensen, L. Janosi, J. Bech, 'Wind farm modelling for power quality', IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001, pp. 1959-1964
  8. S. Heier, R. Waddington, Grid Integration of Wind Energy Conversion Systems, John Wiley & Sons, 2006
  9. Y.H.A. Rahim, A.M.L. Al-Sabbagh, 'Controlled Power Transfer from Wind Driven Reluctance Generator', IEEE Transactions on Energy Conversion, Vol. 12, No. 4, Dec. 1997, pp. 275-281 https://doi.org/10.1109/60.638861