Streptococcus mutans GS-5 Glucosyltransferase의 클로닝과 발현

Cloning and expression of Streptococcus mutans GS-5 glucosyltransferase

  • 김수경 (전북대학교 치과대학 소아치과학교실) ;
  • 김재곤 (전북대학교 치과대학 소아치과학교실) ;
  • 백병주 (전북대학교 치과대학 소아치과학교실) ;
  • 양연미 (전북대학교 치과대학 소아치과학교실) ;
  • 이경열 (전북대학교 치과대학 소아치과학교실) ;
  • 박정렬 (전북대학교 치과대학 소아치과학교실)
  • Kim, Su-Kyeong (Department of Pediatric Dentistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University) ;
  • Kim, Jae-Gon (Department of Pediatric Dentistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University) ;
  • Baik, Byeong-Ju (Department of Pediatric Dentistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University) ;
  • Yang, Yeon-Mi (Department of Pediatric Dentistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University) ;
  • Lee, Kyung-Yeol (Department of Pediatric Dentistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University) ;
  • Park, Jeong-Yeol (Department of Pediatric Dentistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University)
  • 발행 : 2008.02.29

초록

치아우식은 주로 mutans streptococci에 의해 야기되는 감염성 질환으로서 주 원인균에는 streptococcus mutans가 있다. S. mutans가 치아우식을 유발하는 분자 생물학적 기전은 몇 가지 단계를 포함한다. 먼저 S. mutans는 AgI/II와 같은 세포 표면의 섬유성 단백질을 매개로 치면의 타액성 피막에 일차적으로 부착한다. 두번째 단계에서 자당의 존재하에 glucosyltransferase(GTF)는 glucan과 같은 다당체를 합성하게 된다. 마지막으로 이렇게 합성된 glucan은 glucan binding proteins와 상호작용하여 치면세균막을 형성해서 세균의 군집화를 가능하게 한다. 많은 실험과 임상연구에서 S. mutans의 주요 항원(Ag I/II, GTFs, GBPs)들이 치아우식 병리기전에 영향을 준다고 알려져 왔고, 따라서 이런 항원들이 면역계에 작용하여 치아우식을 막는 백신으로 이용 가능하다. 본 실험은 streptococcus mutans GS-5로부터, GTFb, GTFc, GTFd 유전자를 복제하고 염기서열분석을 하였으며, 이중 GTFd가 먼저 재조합 단백질 생산을 위해 발현 벡터에 클로닝 되었으며, 이로부터 단백질이 발현됨을 확인하였다. 이번 실험에서 얻은 순수 GTF 항원은 동물실험을 통해 특정 GTF 활성부위에 대한 항체 생산에 이용될 수 있을 것이다.

Dental caries is an infectious disease caused by mutans streptococci, and is a primary etiologic agent of dental caries in humans. The molecular pathogenesis of mutans streptococcal-associated dental caries occurs in three phases. Firstly, S. mutans attaches to tooth surface via a cell surface adhesion termed antigen I/II. In the second phase, the glucosyltransferase(GTFs) synthesize polymers like glucans in the presence of sucrose. In the third phase, the multivalent glucans interacts with glucan binding proteins (GBPs) and they make dental plaque and accumulation of microorganisms. Many studies and clinical trials have indicated that a mucosal immune response to these antigens(Ag I/II, GTFs, GBPs) of S. mutans can influence the pathogenesis of dental caries. So these antigens can be important vaccine candidates for immunologic intervention against dental caries. In this study, we cloned the genes for GTFb, GTFc, GTFd from S. mutans GS-5 and did the nucleotide sequence analysis. And the recombinant proteins of GTFd and N-terminus of GTFd were expressed. Intact GTF which we get from this experiment can be used for antibody production specific for any GTF activity domain through animal experiment.

키워드

참고문헌

  1. Toshiko K, Takahiko O, Yoshio N, et al. : Immunization against dental caries. Vaccine, 20:2027-2044, 2002. https://doi.org/10.1016/S0264-410X(02)00047-6
  2. Martin A, David A : The scientific and publichealth imperative for a vaccine against dental caries. Nature, 6:555-563, 2006.
  3. Kleinberg I : A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation. Crit Rev Oral Biol Med, 13:108-125, 2002. https://doi.org/10.1177/154411130201300202
  4. Cheol-Wan C, Jae-Gon K, Yeon-Mi Y, et al. : Generation of monoclonal antibody against Ag I/II , a cellular surface protein of Streptococcus mutans GS-5. J Korean academy of pediatr dent, 33:587-596, 2006.
  5. Smith DJ : Dental caries vaccines-Prospects and concerns. Crit Rev Oral Biol Med, 13:335-349, 2002. https://doi.org/10.1177/154411130201300404
  6. Ji-Hye H, Jae-gon K, Yeon-Mi Y, et al. : Generation of antibodies against N-terminus fragment of Ag I/II protein from Streptococcus mutans GS-5. J Korean academy of pediatr dent, 33:401-410, 2006 .
  7. Hajishengallis G, Michalek SM : Current status of a mucosal vaccine against dental caries. Oral Microbiol Immunol, 14:1-20, 1999. https://doi.org/10.1034/j.1399-302X.1999.140101.x
  8. Colby SM, Russell RRB : Sugar metabolism by mutans streptococci. J applied Microbiology symposium supplement, 83:80-88, 1997. https://doi.org/10.1046/j.1365-2672.83.s1.9.x
  9. Bowen WH : A vaccine against dental caries. Br Dent J, 126:159-160, 1969.
  10. Lehner T, Challacombe SJ, Caldwell J, et al. : Immunological and bacterial basis for vaccination against dental caries in rhesus monkey. Nature, 254:517-520, 1975. https://doi.org/10.1038/254517a0
  11. McGhee JR, Michalek SM, Webb J, et al. : Effective immunity to dental caries. J Immunol, 114:300-305, 1975.
  12. Michlek SM, McGhee JR, Mestecky J, et al. : Ingestion of Streptococcus mutans induces secretory immunoglobulin A and caries immunity. Science, 192:1238-1240, 1976. https://doi.org/10.1126/science.1273589
  13. Taubman MA, Smith DJ : Effects of local immunization with Streptococcus mutans on induction of salivary immunoglobulin A antibody and experimental dental caries in rats. Infect Immun, 9:1079-1091, 1974.
  14. Schilling KM, Bowen WH : Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect Immun, 60:284-295, 1992.
  15. Akihiro Y, Howard K : Streptococcus mutans Biofilm formation-utilization of a gtfB promotergreen fluorescent protein construct to monitor development. Microbiology, 148:3385-3394, 2002.
  16. Suzuki K, Tagami J, Hanada N, et al. : Role of F1F0-ATPase in the growth of Streptococcus mutans GS5. J Appl Microbiol, 88:555-562, 2000. https://doi.org/10.1046/j.1365-2672.2000.00840.x
  17. Corpet F : Multiple sequence alignment with hierarchical clustering. Nucl Acids Res, 16:10881- 10890, 1988. https://doi.org/10.1093/nar/16.22.10881
  18. Russell RRB : Glucan-binding proteins of Streptococcus mutans Serotype c. J Gen Microbiol, 112:197-201, 1979. https://doi.org/10.1099/00221287-112-1-197
  19. Matsumoto M, Fujita K, Ooshima T, et al. : Binding of glucan-protein C to GTFD-synthesized soluble glucan in sucrose-dependent adhesion of Streptococcus mutans. Oral Microbiol Immunol, 21:42-46, 2006. https://doi.org/10.1111/j.1399-302X.2005.00252.x
  20. Loesche WJ : Role of Streptococcus mutans in human dental decay. Microbiol Rev, 50:353-380, 1986.
  21. Kuramitsu HK : Virulence factors of mutans streptococci-role of molecular genetics. Oral Biol Med, 4:159-176, 1993.
  22. Jin-Woo J, Jae-Gon K, Byeong-Ju B, et al. : Identification of the ag I/II and GTFd genes from Streptococcus mutans GS-5. J of the Korean academy of pediatric dent, 32:357-369, 2005.
  23. Honda O, Kato C, Kuramitsu HK, et al. : Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. J Gen Microbiol, 136:2099-2105, 1990. https://doi.org/10.1099/00221287-136-10-2099
  24. Shiroza T, Ueda S, Kuramitsu HK, et al. : Sequence analysis of the gtfB gene from Streptococcus mutans GS-5. Gene, 69:101-109, 1988. https://doi.org/10.1016/0378-1119(88)90382-4
  25. Ueda S, Shiroza T, Kuramitsu HK, et al. : Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene, 69:101-109, 1988. https://doi.org/10.1016/0378-1119(88)90382-4
  26. Jefferson KK : What drives bacteria to produce a biofilm. Microbiol Lett, 236:163-173, 2004.
  27. Brandtzaeg P, Fjellanger I, Gjeruldsen S, et al. : Human secretory immunoglobulins. I. Salivary secretions from individuals with normal or low levels of serum immunoglobulins. Scand J Haematol, 12:3-83, 1970.
  28. Kerr MA : The structure and function of human IgA. Biochem J, 271:285-296, 1990.
  29. Lindh E : Increased resistance of immunoglobulin A dimmers to proteolytic degradation after binding of secretory component. J Immunol, 114: 284-286, 1975.
  30. Bergmann KC, Waldman RH, Tischner H, et al. : Antibody in tears, saliva, and nasal secretions following oral immunization of humans with inactivated influenza virus vaccine. Int Arch Allergy Appl Immunol, 80:107-109, 1986. https://doi.org/10.1159/000234034
  31. Czerkinsky C, Prince SJ, Michalek SM, et al. : IgA antibody-producing cells in peripheral blood after antigen ingestion: evidence for a common mucosal immune system in humans. Proc Natl Acad Sci U S A, 84:2449-2453, 1987. https://doi.org/10.1073/pnas.84.8.2449
  32. Czerkinsky C, Svennerholm A-M, Quiding M, et al. : Antibody-producing cells in peripheral blood and salivary glands after oral cholera vaccination of humans. Infect Immun, 59:996-1001, 1991.
  33. Mestecky J, McGhee JR, Arnold RR, et al. : Selective induction of an immune response in human external secretions by ingestion of bacterial antigen. J Clin Invest, 61:731-737, 1978. https://doi.org/10.1172/JCI108986
  34. Ogra PL, Losonsky GA, Fishaut M, et al. : Colostrum-derived immunity and maternalneonatal interaction. Ann N Y Acad Sce, 409: 82-93, 1983. https://doi.org/10.1111/j.1749-6632.1983.tb26861.x
  35. Quiding M, Norstro¨m I, Kilander A, et al. : Intestinal immune responses in humans:Oral cholera vaccination induces strong intestinal antibody responses, gamma-interferon production and evokes local immunological memory. J Clin Invest, 88:14-148, 1991.
  36. Vincent I, Stacy B, Robert G, et al. : Effect of an Orphan Response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis. Infection and Immunity, 71:4351-4360, 2003. https://doi.org/10.1128/IAI.71.8.4351-4360.2003