Gene Expression of Exposure to Mineral Trioxide Aggregate(MTA) on Dental Pulp Cells

Mineral Trioxide Aggregate(MTA)에 의한 치수세포의 유전자 발현변화

  • Choi, Yu-Seok (Department of Pediatric Dentistry, College of Dentistry, Chosun University) ;
  • Lee, Nan-Young (Department of Pediatric Dentistry, College of Dentistry, Chosun University) ;
  • Lee, Sang-Ho (Department of Pediatric Dentistry, College of Dentistry, Chosun University)
  • 최유석 (조선대학교 치과대학 소아치과학교실) ;
  • 이난영 (조선대학교 치과대학 소아치과학교실) ;
  • 이상호 (조선대학교 치과대학 소아치과학교실)
  • Published : 2008.02.29

Abstract

Dental pulp cells are assumed to possess the capacity to elaborate both bone and dentin matrix under the pathological conditions following tooth injury. The purpose of this study is to examine the effects of mineral trioxide aggregate (MTA) on various gene expression regarding dentinogenesis and cell viability assay in cultured primary human dental pulp cells. The author also examined the effects of this material on cellular alkaline phosphatase activity as a potential indicator of dentinogenesis. For gene expression on MTA, reverse transcriptase polymerase chain reaction was performed using primer sets of glyceraldehyde-3-phosphate dehydrogenase, type I collagen, alkaline phosphatase(ALP), osteonectin, and dentin sialoprotein after 2 and 4 days. Cell viability assay showed that the proportion of MTA-treated pulp cells which had been exposed for 5 days to MTA was higher than that of the control cells. Among the genes investigated in this study, ALP and osteonectin(SPARC) were increased in MTA treated group than in control. These findings suggest that this dental pulp culture system may be useful in the future as a model for studying the mechanisms underlying dentin regeneration after the treatment with MTA. Exposure to MTA material would not induce cytotoxic response in the dental pulp cells. In addition, MTA could influence the behavior of human pulp cells by increasing the ALP activity and SPARC synthesis.

치아 치수 세포는 치아 손상에 따르는 병리적인 상황에서 골과 상아질 기질을 형성하는 능력을 가진 것으로 생각된다. 본 연구에서는 MTA가 사람 치수세포의 성장에 미치는 영향과 상아질 형성에 관여하는 유전자의 발현을 유도하는지를 알아보고자 하였다. 또한 상아질 형성의 잠재적 지표인 alkaline phosphatase(ALP) activity에 미치는 영향을 평가하였다. 유전자 발현 검사를 위해 glyceraldehyde-3-phosphate dehydrogenase, type I collagen, alkaline phosphatase, osteonectin(SPARC), and dentin sialoprotein primer set을 이용하여 MTA 처리 2일과 4일 후 reverse transcriptase polymerase chain reaction(RT-PCR)을 시행하였다. cell viability assay(세포 생존력 측정) 에서 5일간 MTA에 노출된 치수 세포의 비율이 대조군보다 높았다. 대조군에 비해 MTA를 처리한 군에서 ALP와 SPARC가 증가되었다. 이상의 결과를 종합하여 보면, 이 연구에 사용한 dental pulp culture system은 MTA를 포함한 치과재료의 처리 후 치수세포의 성장과 분화 그리고 상아질 형성 유도 기전을 연구하는 데 유용한 모델로 사용할 수 있다. MTA 처리는 사람 치수세포에 세포독성을 유도하지 않으며, ALP 활성도와 유전자 발현 그리고 osteonectin (SPARC) 유전자 발현을 증가시켜 수복상아질을 형성할 것으로 사료된다.

Keywords

References

  1. Yamamura T : Differentiation of pulpal cells and inductive and influences of various matrices with reference to pulpal wound healing. J Dent Res, 64:530-540, 1985.
  2. Tziafas D : Basic mechanisms of cytodifferentiation and dentinogenesis during dental pulp repair. Int J Dev Biol, 39:281-290, 1995.
  3. Tziafas D, Smith AJ, Lesot H : Designing new treatment strategies in vital pulp therapy. J Dent, 28:77-92, 2000. https://doi.org/10.1016/S0300-5712(99)00047-0
  4. Smith AJ, Cassidy M, Perry H, et al. : Reactionary dentinogenesis. Int J Dev Biol, 39:273-280, 1995.
  5. Smith AJ, Lesot H : Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair?. Crit Rev Oral Biol Med, 12:425-37 2001. https://doi.org/10.1177/10454411010120050501
  6. Murray PE, Windsor LJ, Smyth TW, et al. : Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Crit Rev Oral Biol Med, 13:509-520, 2002. https://doi.org/10.1177/154411130201300607
  7. Ham KA, Witherspoon DE, Gutmann JL, et al. : Preliminary evaluation of BMP-2 expression and histologic characteristics during apexification with calcium hydroxide and mineral trioxide aggregate. J Endod, 31:275-279, 2005. https://doi.org/10.1097/01.don.0000140584.65320.cc
  8. Sarkar NK, Caicedo R, Ritwik P, et al. : Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod, 31:97-100, 2005. https://doi.org/10.1097/01.DON.0000133155.04468.41
  9. Holland R, Souza V, Nery MJ, et al . : Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J Endod, 25:161-166, 1999. https://doi.org/10.1016/S0099-2399(99)80134-4
  10. Regan JD, Gutmann JL, Witherspoon DE : Comparison of Diaket and MTA when used as root-end filling materials to support regeneration of the periradicular tissues. Int Endod J, 35:840- 847, 2002. https://doi.org/10.1046/j.1365-2591.2002.00582.x
  11. Economides N, Pantelidou O, Kokkas A, et al. : Short-term periradicular tissue response to mineral trioxide aggregate(MTA) as root-end filling material. Int Endod J, 36:44-48, 2003. https://doi.org/10.1046/j.0143-2885.2003.00611.x
  12. Torabinejad M, Hong CU, Lee SJ, et al. : Investigation of mineral trioxide aggregate for root end filling in dogs. J Endod, 21:603-608, 1995. https://doi.org/10.1016/S0099-2399(06)81112-X
  13. Torabinejad M, Pitt Ford TR, McKendry DJ, et al. : Histologic assessment of MTA as root end filling in monkeys. J Endod, 23:225-228, 1997. https://doi.org/10.1016/S0099-2399(97)80051-9
  14. Koh ET, McDonald F, Pitt Ford TR, et al. : Cellular response to Mineral Trioxide Aggregate. J Endod, 24:543-547, 1998. https://doi.org/10.1016/S0099-2399(98)80074-5
  15. Koh ET, Torabinejad M, Pitt Ford TR, et al. : Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res, 37:432-439, 1997. https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<432::AID-JBM14>3.0.CO;2-D
  16. Zhu Q, Haglund R, Safavi KE, et al. : Adhesion of human osteoblasts on root-end filling materials. J Endod, 26:404-406, 2000. https://doi.org/10.1097/00004770-200007000-00006
  17. Aeinehchi M, Eslami B, Ghanbariha M, et al. : Mineral trioxide aggregate(MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report. Int Endod J, 36:225-231, 2003. https://doi.org/10.1046/j.1365-2591.2003.00652.x
  18. White C Jr, Bryant N : Combined therapy of mineral trioxide aggregate and guided tissue regeneration in the treatment of external root resorption and an associated osseous defect. J Periodontol, 73:1517-1521, 2002. https://doi.org/10.1902/jop.2002.73.12.1517
  19. Holland R, Filho JA, de Souza V, et al. : Mineral trioxide aggregate repair of lateral root perforations. J Endod, 27:281-284, 2001. https://doi.org/10.1097/00004770-200104000-00011
  20. Keiser K, Johnson CC, Tipton DA : Cytotoxicity of mineral trioxide aggregated using human periodontal ligament fibroblasts. J Endod, 26:288- 291, 2000. https://doi.org/10.1097/00004770-200005000-00010
  21. Estrela C, Bammann LL, Estrela CR, et al. : Antimicrobial and chemical study of MTA,Portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz Dent J, 11: 3-9, 2000.
  22. Kuru L, Griffiths GS, Petrie A, et al. : Alkaline phosphatase activity is upregulated in regenerating human periodontal cells. J Periodontal Res, 34:123-127, 1999. https://doi.org/10.1111/j.1600-0765.1999.tb02231.x
  23. Bonson S, Jeansonne BG, Lallier TE : Root-end filling materials alter fibroblast differentiation. J Dent Res, 83:408-413, 2004. https://doi.org/10.1177/154405910408300511
  24. Reichert T, Storkel S, Becker K, et al. : The role of osteonectin in human tooth development: an immunohistological study. Calcif Tissue Int, 50:468-472, 1992. https://doi.org/10.1007/BF00296779
  25. Begue-Kirn C, Smith AJ, Loriot M, et al. : Comparative analysis of TGF beta s, BMPs, IGF1, msxs, fibronectin, osteonectin, and bone sialoprotein gene expression during normal and in vitro-induced odontoblast differentiation. Int J Dev Biol, 38:405-420, 1994.
  26. Itota T, Nishitani Y, Sogawa N, et al. : Alteration of odontoblast osteonectin expression following dental cavity preparation. Arch Oral Biol, 46:829-834, 2001. https://doi.org/10.1016/S0003-9969(01)00041-3
  27. Wlodarski KH, Reddi AH : Alkaline phosphatase as a marker of osteoinductive cells. Calcif Tissue Int, 39:382-385, 1986. https://doi.org/10.1007/BF02555175
  28. Yan Q, Sage EH : SPARC, a multicellular glycoprotein with important biological functions. J Histochem Cytochem, 47:1495-1506, 1999. https://doi.org/10.1177/002215549904701201
  29. Tremble PM, Lane TF, Sage EH, et al. : SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J Cell Biol, 121:1433-1444, 1993. https://doi.org/10.1083/jcb.121.6.1433
  30. Francki A, Bradshaw AD, Bassuk JA, et al. : SPARC regulates the expression of collagen type I and transforming growth factor-beta1 in mesangial cells. J Biol Chem, 274:32145-32152, 1999. https://doi.org/10.1074/jbc.274.45.32145
  31. Bassuk JA, Birkebak T, Rothmier JD, et al. : Disruption of the Sparc locus in mice alters the differentiation of lenticular epithelial cells and leads to cataract formation. Exp Eye Res, 68: 321-331, 1999. https://doi.org/10.1006/exer.1998.0608