Multivariate Stratification Method for the Multipurpose Sample Survey : A Case Study of the Sample Design for Fisher Production Survey

다목적 표본조사를 위한 다변량 층화 : 어업비계통생산량조사를 위한 표본설계 사례

  • Published : 2008.03.31

Abstract

Stratification is a feature of the majority of field sample design. This paper considers the multivariate stratification strategy for multipurpose sample survey with several auxiliary variables. In a multipurpose survey, stratification procedure is very complicated because we have to simultaneously consider the efficiencies of stratification for several variables of interest. We propose stratification strategy based on factor analysis and cluster analysis using several stratification variables. To improve the efficiency of stratification, we first select the stratification variables by factor analysis, and then apply the K-means clustering algorithm to the formation of strata. An application of the stratification strategy in the sampling design for the Fisher Production Survey is discussed, and it turns out that the variances of estimators are significantly less than those obtained by simple random sampling.

층화는 표본설계 단계에서 예비정보를 활용하는 대표적인 방법으로 대부분의 전국 단위의 표본설계에서 널리 활용된다. 층화의 효율을 극대화시키기 위해서는 조사목적에 부합되는 적절한 층화변수를 선택하는 것이 매우 중요하다. 하나의 표본을 통해 여러 개의 관심변수를 동시에 조사하는 다목적조사에서 다변량 층화변수가 있을 때 층화 전략을 세우는 것은 매우 복잡한 양상을 띤다. 본 연구에서는 관심변수의 수가 매우 많은 다목적조사를 위한 층화전략을 다룬다. 층화를 위해 구체적으로 사용하는 통계적 도구는 요인분석과 군집분석 등의 다변량 통계기법인데, 먼저 요인분석을 통해 적절한 층화변수들을 선정한 후 그 변수들을 이용하여 군집분석을 통해 층화를 하는 전략을 소개한다. 본 연구에서는 구체적으로 해양수산부의 어업비계통생산량조사를 위한 표본설계에서의 층화과정을 다룬다.

Keywords