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Regularization Method by Subset Selection for Structural Damage Detection
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Abstract

In this paper, a new regularization method by parameter subset selection method is proposed based on the residual force vector
for damage localization. Although subset selection using the fundamental modal characteristics as a residual function has been
successful in detecting a single damage location, this method seems to have limited capabilities in the detection of multiple damage
locations and typically requires cumbersome weighting values. The method is presented herein and considers cases in which
damage detection must be achieved using incomplete measurements of the structural responses. Model expansion is incorporated to
deal with this challenge. The unique advantage of employing the new regularization method is that it can reliably identify multiple
damage locations. Through an illustrative example, the proposed damage detection method is demonstrated to be a reliable tool for
identifying multiple damage locations for a planar truss structure.

Keywords ' regularization, subset selection, damage detection, structural health monitoring, and model
updating

1. Introduction

corrosion, and fatigue are all factors that result in

damage in structures, in some cases making them

The recent collapse of the I-35W bridge in

serviceably unsafe. Recent advances in sensor tech-

Minneapolis highlights the importance of continucus
structural health monitoring(SHM) of our infra-
structure for public safety. One of the motivations
in SHM is damage diagnosis. Damage inspection is
an exhaustive and somewhat inconsistent process

that requires numerous hours of hard labor. Aging,

nologies combined with enhanced optimization tech-
niques provide the teols for localization and quanti-
fication of damage in civil engineering structures for
improved prioritization of maintenance needs and
prevention of catastrophic consequences.

One of the common approaches to achieve damage
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detection is to use measured low frequency vi-
bration response data. Extensive surveys on vi-
bration based damage detection and their challenges
have been presented by Doebling et al.{1998) and
Friswell et al.(1997). Numerous investigations have
been conducted to detect damage in large-scale
structures using vibration data such as the fre-
quency response function and modal data (natural
frequency, damping ratio. and mode shapes). The
underlying motivation in vibration based damage
detection is that certain dynamic residual function
between unhealthy and healthy structure is a non-
linear function of damage state variables.

Two classes of approaches have been investigated
to locate damage in structures, including 1) optimal
matrix update methods and 2) parameter based fi-
nite model updating and regularization. The optimal
matrix update methods has focused on applying a
minimization to the property perturbation to obtain
a solution to the residual medal force equation sub-
ject to constraints such as symmetry, positive defi-
niteness, and sparsity. In the context of damage
detection, the perturbation is usually described in
terms of the stiffness properties. As an objective
function, the majority of early work in the optimal
matrix update methods used a minimum norm of
the global stiffness matrix{Baruch et al., 1978:
Berman et al., 1983). Although this method ach-
ieves a solution by perturbing the global stiffness
matrix as little as possible, all of the elements in
the matrices may be altered. Therefore, the effect of
any damage would likely be spread out over all de-
grees of freedom, making it very difficult to locate
damage. In 1994, Kaouk, et al. tried o resolve the
problem by using a minimum rank of the global
stiffness matrix. In 1996, Doebling et al. extended
this method using elemental stiffness parameters
while constraining the connectivity of the global
stiffness matrix. However, this technique can not
ensure changes in the stiffness that might be asso-
ciated with damage in a particular region.

Model updating approaches attempt to quantify

damage within a structure by adjusting the parame-
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ters associated with the finite elements in an ana-
lytical model(called the identification model) that
represents the behavior of the structure. Thus,
structural damage detection problems are recast in-
to optimization problems where a set of damage pa-
rameters in the analytical model are adjusted to
achieve the maximum correlation with the ex-
perimental observations. Numerous correlation bas-
ed metrics have been proposed based on modal
quantities, such as natural frequencies and mode
shapes. For multiple damage locations, Messina et
al.(1996; 1998) suggested a series of correlation-
based techniques, DLAC(Damage Location Assura-
nce Criterion) and MDLAC(Multiple Damage Loca-
tion Assurance Criterion). Recently, Koh et al.(2007)
investigated practical aspects of the damage de-
tection methods through exploiting various correla-
tions in terms of natural frequencies and mode
shapes. However, because all of the parameters in a
large-scale baseline finite element model are likely
to be changed, the damage detection often becomes
an underdetermined problem that has a non-
uniqueness issue.

Researchers have suggested several methods to
deal with this challenge, often by reducing the num-
ber of parameters or expanding the measured data
as part of the efforts for damage detection. One ap-
proach is to use conventional regularization techni-
ques such as the Tikhonov regularization method or
the Lagrange multiplier method. Although the regu-
larization technique applies extra constraints to the
ill-posed parameter estimation problem to ensure a
unigue solution(Fregolent et al., 1996: Rothwell et
al.. 1989), minimum norm type solutions tend to
spread the identified damage over a large number of
parameters, making damage location unclear. The
other approach is to select a subset of damage pa-
rameters that best represents the damage locations
by solving a combinatorial optimization problem. In
1997, Friswell, et al. suggested a parameter subset
selection method for locating damages using ei-
gen-sensitivity, measuring the differences in natural

frequencies between the damaged and undamaged



state of a structure. In 2003, Titurus et al. ex-
tended the procedure provided by Friswell et al. by
utilizing the mode shape differences due to damage
and its sensitivity. Although the subset selection
method of utilizing fundamental modal character-
istics as a residual function was successful in de-
tecting a single damaged location, this method is
limited when attempting to detect multiple damages
and typically requires cumbersome weighting be-
cause of the difference in units. Recently, damage
functions have been used to overcome the limitation
by smoothing distribution of the model proper-
ties(Song et al., 2007). However, accuracy in ap-
proximating continuous distribution of physical
properties is dependent on the coarseness of dam-
aged elements and the layout of FE model(Teughels
et al., 2003). Therefore, a more effective technique
for damage detection is still sought.

In this paper, a new regularization method by
parameter subset selection method using the re-
sidual force vector is proposed to achieve detection
of multiple damaged regions in a structure. Unlike
the method proposed by Titurus et al.(2003), the
residual force vector is used as a nonlinear function
of damage parameters instead of fundamental modal
characteristics. The focus herein is on the detection
and location of damage and a second stage employ-
ing one of several possible optimization approaches
for model updating would be employed next to de-
termine the extent of damage(Yun et al., 2007).
The impact of having incomplete measurements is

considered within the approach.

2. Theoretical Background for Structural
Damage Detection

In this section, the proposed damage detection
method is described in detail. Because there is a
limitation on the number of sensors that can rea-
sonably be used, it is difficult to measure all DOFs
in the mode shapes of the reference model.
Therefore, the incomplete set of measured modes

should be expanded to the size of the finite element

model for damage detection. For the expansion
process, system equivalent reduction expansion
process(SEREP) is used in this paper while subset
selection of damage parameters is utilized for dam-
age localization. However, a new residual based on
the residual force vector is employed to improve the
performance of the damage localization process. The
following sections explain SEREP method, probiem
formulation using residual force vector and regulari-

zation by parameter subset selection.
2.1 Model Expansion

In practical modal tests, it is usually challenging
to obtain the complete measured modes with a lim-
ited number of sensors and it is also difficult to
measure rotational DOFs. Within this section, the
SEREP method is presented. This method uses the-
oretical eigenvectors to produce a transformation
matrix from the DOFs in the measured mode
shapes to all of the DOFs in the analytical model
to be updated. The equation for an undamped ana-

lytical model can be expressed as

ol ol o
K, K, |[|9; ‘M, M, ||o, 0

where 't indicates the retained DOFs, t denotes
the truncated DOFs, K and M are the stiffness and
mass matrices, respectively, and @ indicates the jth
mode shape vector. The theoretical eigenvectors are

constructed from the analytical model in equation

(1). The resulting transformation matrix is given as

T= P iy
o " (2)

tm

where 't corresponds to the number of sensors on
tested models, ‘m’ indicates the number of measured
modes from the testing, ®,, is the mode shape ma-
trix corresponding to the retained DOFs in the ana-
lytical model, and ®,, is the mode shape matrix
corresponding to the truncated DOFs in the ana-

lytical model. ®, in equation (3) represents the
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Moore—Penrose pseudo-inverse of this matrix given
by
. -1
o, =(0,®,) ®, (3)
It is noteworthy to mention that the number of
measured modes(m) is usually smaller than the

number of retained DOFs(r)

model. When this occurs inherent errors are present

in the analytical

from the use of the pseudo-inverse which has a
least squares error. Additional sources of error in
the measured modes include noise and measurement
errors which also propagate through the expansion
process. However, when m is equal to r, the SEREP
expansion process does not introduce additional
errors. The measured mode shape matrix can thus

be expanded using

[:(I)expanded :Lequ = [T]nqu, [(I)measured ]er (4)

where ‘neq indicates the total number of DOFs in

the analytical model.

2.2 Problem Formulation using Residual
Force Vector

Herein it is assumed that structural damage can
be modeled as a reduction in Youngs modulus(E)
for a selected number of finite elements. Although
damage is inherently nonlinear, this assumption is
valid because we are typically considering measured
responses due to small vibration levels pre- and
post-damage which are both linear situations. Thus,
the global stiffness matrix of the finite element
model can be expressed as the summation of dam-
aged and undamaged elemental stiffness matrices,
where the local element stiffness is multiplied by a
reduction factor as

nelem

[K]= Y (1-6,)[k], (5)

i=1

where nelem is the total number of elements in

the analytical model, 6, is the damage parameter,
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which equals zero for healthy state and unity for

complete damage state, and [K] is the structural
stiffness matrix. [K] is assembled from the ele-

mental stiffness matrix, [K]. In this paper, the pa-
rameter subset selection method is adopted for
damage localization using the residual force vector
to enhance localization performance. The problem is
theoretically formulated here. First, the residual

function is expressed as
I=|z, —Z(B)ll2 (6)

where %, is the vector consisting of measured da-
ta and z(8) consists of the same quantities as a
function of damage parameters, 0. Because the re-
sidual function is a nonlinear function of the dam-
age parameters, it is a combinatorial optimization
problem in which 0 is sought by minimizing this
function. By taking the Taylor series of Z., the re-
sidual function can be described as

zmzz(0)+se+§—02+§-e3+... (7
2! 3!

where § is the sensitivity matrix that contains
the first-order derivatives of the measured quanti-
ties with respect to the damage parameters and
z(0) is the measured data from the healthy
structure. Neglecting the higher order terms in
equation (7), the linearized equation can be rewrit-

ten as
S0=>b 8

where b=za-zu is the difference in the measured
values between the damaged and undamaged state.
S and b are calculated in terms of the residual
force vector. The ith residual force vector for an un-

damaged structure is given by
R; = Ko, "}"iM(Pi (9

where K and M are the stiffness and mass ma-

trices of the structure, respectively. If the ana-



lytical model to be updated truly represents the
healthy state of the physical structure, the residual
function is expected to be close to zero. In practical
applications, the calibration process to determine an
analytical model of the healthy structure can be ac-
complished by minimizing the modeling error, for
example, by choosing accurate finite element models
and accurate boundary conditions. However, for
physical structures some modeling errors will al-
ways remain.

Taking the derivative of the residual force vector
with respect to the jth damage parameter, sensitiv-
ities of the residual force vector can be expressed

as

R, 0K

R Ky k0
6, 08,

0.

L M. —A.M L
It should also be noted that the mass matrix is
assumed to not change. Thus, the sensitivity of ei-
genvalues and mode shapes are calculated with the

following equations [17].

o, _ (K, om
20, |20, "0, "

% _ ¢ o] (0K/96, -2, 0M/20, )@,
ae- k=l k=i (}»k—}\.i) k

]

1 oM
—=Q, —— O, (11)
2% 90, ®

However, because the mass matrix is constant,
the second term in the sensitivity of the mode
shapes will vanish. Therefore, the sensitivity matrix

S in terms of the residual force vectors is

dR, OR, R, |
ENT N
JR, OR,  OR,
S=| 08, 09, = 00,

€ Rineemx® (12)

R, R, R,

6, 00, 08,

where neq, m, and p are, respectively, the
number of DOFs, the number of measured modes,
and the number of damage parameters. The b vec-

tor is also calculated by

b, =R, -R,

where Ry =Ko, —A ;Mo 1)

where Ay and @4 are the measured eigenvalues
of the

respectively. Because the residual force vector for

and mode shapes damaged structure,
an undamaged structure, R, will be approximately
equal to the zero vector as explained previously, re-
sidual values of the b vector originate from Ry.
Therefore, a linearized subset selection problem is
posed as in equation(8). If the damage parameters
are defined for p finite elements and ‘'m modes are
obtained using modal testing, then S is an (neq
xm)*p matrix and b is a vector of length p. Then
the given problem is to find the subset of parame-
ters that minimizes the residuals within these
equations. In the problem statement, it is implicit
that the goal is to identify the minimum number of
nonzero damage parameters to produce a sufficiently
small residual. Because the number of rows of the
S matrix is greater than the number of columns,
the problem is ill-posed in an over-determined
sense. Therefore, the parameter subset selection
method is described for purposes of regularization in
the following section.

In the case of Titurus et al.'s(2003) method,
which utilizes modal parameters, the residual vector

b and sensitivity matrix S are expressed as

’— SK,[,I Sk.l.l : s

Alp
S S S
A,m,l Am2 Am,
S — m m m,p € R((m+l)xneq)x(p) :
.11 Sw.l,z : o1Lp
_s(p,m.l S(p,m.Z : S(p,m,p_
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Also, the sensitivity values are expressed as

do,
and S, =—=

de.

0=0 ]

i

Sx,ifﬁ (15
1

0=0

If the highest order of nonlinearity of eigen-
frequencies and eigenmodes, with respect to the
damage parameters, are respectively q and r, the
highest order of nonlinearity in the residual vector
b from equation(14) is either q or r. However, in
the proposed method the highest nonlinear order in
the residual vector b(equation(13)) is the max(qr,
r) consistently for all rows. This observation implies
that changes in the residual function due to damage
are more pronounced in the proposed method than
in the original residual function in equation(14).
From the additional third and fourth terms in equa-
tion(10), the sensitivity of the proposed method is
larger than the sensitivity in equation(15). More
importantly, when comparing the size of the sensi-
tivity matrices S for the two cases, the proposed
method is less over-determined than Titurus et al’s
method. Thereby, the proposed method is advanta-
geous to implement over previous methods. These
advantages are also evidenced by numerical exam-

ples presented subsequently in Section 3.

2.3 Regularization through Parameter
Subset Selection Method
In the identification of damage parameters,
sub-optimal problems are often sequentially for-
mulated wusing the forward selection approach
(Lallement et al., 1990). In each sub-optimal prob-
lem, one damage parameter is selected out of the

remaining damage parameters. The difference of
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measured data, b, in equation(13) can be viewed
as a linear combination of a set of column vectors

within the S=[(a1 a2 - ap) matrix using

b=

e

0 (16)

j=1

where p indicates the number of damage
parameters. Overall, the main task of forward se-
lection is to select a column vector in the S matrix
that best represents the residual vector b, that is,
vields the minimum value of the resulting residual

function
I,=|b-a 8 (17)

where the summation rule with respect to j is not
applied here and the least square estimate eej of
the jth parameter can be obtained by taking a de-

rivative of J= b -ai8;1° with respect to 9; as

0, =— (18)
J

Finding the minimum value of the residual func-
tion J= b -a;jB; 1% s equivalent to finding a vector
4; that forms the minimum angle with the vector
b. This procedure seeks the best basis vector 3;
that is closest to the damage residual vector b. If
the first basis vector @ and its corresponding dam-
age parameter e,-l are found, Gram-Schmidt ortho-
gonalization is generally performed on the remain-
ing column vectors to ensure a well-conditioned
sub-matrix of §. A vector orthogonal to the first
vector is produced by taking the original second
vector and projecting _out the component of the vec-
tor that lies along the first vector. This task is ac-
complished through the following equations

a,<a,—oa; and b<b-a, 6,

(19)
T T
where a -ajlaj/ajlajl

where %; is the component of the vector @; that

lies along the first vector and “6; can be calculated



by equation(18). After orthogonalization, the re-
sidual function in equation(17) for each parameter j
is calculated and the minimum value is chosen as
follows

min({Jz,J3,...,Jp})——)aj2 and 6, (20)

Equivalently, the minimum angle between orth-
gonalized column vector 3; and residual vector b
can be sought. Therefore, the angle can be de-

scribed as

This iterative procedure is continued to identify
m damage parameters while retaining the parame-
ters chosen in the previous steps. When a total of
m damage parameters are selected in the subset,

the residual sum of squares is defined as

2

RSS, =Hb—§:aji ‘6, (22)
i=l

where “8; is the least squares estimator for the
jth parameter, equation(18). Efroymson(1960) sug-
gested a stepwise regression algorithm which pro-
vides a basis by which to decide whether a new pa-
rameter should be included in the subset. If (61, B2,
| Bm) are already selected as damage parameters
and a new parameter Bm+1 is chosen for evaluation,

then the F-to-enter statistic can be expressed as

RSS, —RSS, .,

* “RSS,,/(n-m-1) @)

where RSS indicates the residual sum of squares
and n is the number of total parameters. If the Fa
value is greater than a predetermined value(Fin),
the parameter is included in the subset. If the cri-
terion is not met, the parameter is excluded.
However, this test can also be performed to remove
a selected parameter from the subset by utilizing
the F-to-remove statistic which is expressed by

¢ _RSS,, -RSS,

If the Fr value is less than a predetermined value
(Fout), the parameter is removed from the subset.
In 1996, Miller mathematically proved that this ad-
dition and removal process terminates with a finite
number of different subsets. Therefore, Miller in-

troduced the following objective function

L(S)=RSSml'm[(1+i.) (25)
i=l n-—i

where F is any value such that Fou<F<Fin and s
represents a subset of variables. Efroymson's algo-
rithm is viewed as a heuristic algorithm that mini-
mizes the objective function. Thus, a finite sequence
of values for the objective function will decrease at
each step and ultimately terminate the process.
Within this study, the F-to-enter statistic is only

utilized for convenience.
3. lllustrative Example

In this section, an example is provided to demon-
strate the performance of the proposed method. The
first two examples consider simple beam structures
for examination of the capabilities of the proposed
method. The effects of measurement noise on the
performance of the proposed method are also
investigated. Comparisons to the original method
using fundamental modal quantities are also pre-
sented in the first example. In the second example,
the transformation error through SEREP modal ex-
pansion due to the limited number of sensors is
considered. The third example considers a more

complex frame structure.
3.1 Fourteen-Bay Planar Truss Structure
In this example, a 14 bays planar truss structure
is selected to demonstrate the performance of the

two-stage damage detection method. The truss

structure is modeled by 53 truss elements with 28

BIEMATRDEE =23 M21H H15(2008.2) 79
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Figure 1 Fourteen-Bay Planar Truss Structures and Damage Scenario

"MAC Value

Mode Shape of Damaged Structure Mode Shape of Undamaged Structure

(a) 8 Measured Modes

nodes as shown in Figure 1. The total length of the
structure is 5.56m with 0.40m in each bay, and the
height of structure is 0.40m. The members are steel
bars with a tube cross section with an inner diame-
ter of 3.1mm and an outer diameter of 17.0 mm.
The physical properties are assumed as: the elastic
modulus of the material=1.999x10°N/mm’: and the
mass density:7,827X10-9kg/mm35 The members are
connected with pinned joints. There are two sup-
ports at the ends of the structure: a pin support at
the left end and a vertical roller support at the
right end. The structure totals 53DOFs. Two differ-
ent cases are tested: the first case in which entire
DOFs are measured and the second case in which
partial DOFs are measured. So SEREP is used for
the second case. To simulate the partially measured
degrees, a total of 26 degrees, i.e. vertical DOFs at
2~14 and 16~28 are taken as
locations. Damages are incurred to elements 2, 18,
32, 41 and 47, with elements 32 and 47 having a
70% loss of sections, and the rest having a 90%

loss of sections.

nodes sensor

80 sIEXATARZEE =22 H21H HM15(2008.2)
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MAC Value

(b) 15 Measured Modes
Figure 2 MAC Value between Damaged and Undamaged Structure

Figure 2 shows change of mode shapes in terms
of MAC values between damaged and undamaged
structures. Table 1 shows the change in natural
MAC

values. Some of the changes in the natural frequen-

frequencies and mode shapes through the

cies are shown to be more than 10%. Higher modes
are more sensitive to damage than lower modes.
The subset selection is applied to locate damaged
elements. In the first case, 8 modes are measured
and in the second case, 15 modes are measured.
Figure 3 shows the sub-space angles for each
element. All damaged elements are selected in the
first 5 selections both in the two cases. The angle
indicates the subspace angle between the orthogon-
alized column vector and the residual vector.
Therefore, the angles of healthy elements are very
close to 90 degree while damage elements show rel-
atively small angle.

The numbers depicted in Figure 3 indicate the
order of selection of corresponding element. When
all DOFs are measured, 8 measured modes were
damaged elements.

sufficient for detecting all



Table 1Change of First 15 Natural Frequencies and MAC values Before and After Damage

Mode Natural Frequency (Hz) Change of N.F. (%) MAC value
Damaged Undamaged
1 3.7150 4.4500 16.51 0.9337
2 4.5393 5.2146 12.95 0.9316
3 8.9612 9.8177 8.72 0.9822
4 12.5824 13.9797 9.99 0.9572
5 14.8201 15.8300 6.37 0.9552
6 18.9977 20.4747 7.21 0.9407
7 22.5332 24.8147 9.19 0.9182
8 24.8532 26.0186 4.47 0.9499
9 29.8965 32.1394 6.97 0.8688
10 32.3656 34.8162 7.03 0.8165
11 35.0009 37.7979 7.39 0.8853
12 39.9861 43.8854 8.88 0.8024
13 42.3155 44,1181 4.08 0.7501
14 445331 49.2666 9.60 0.6147
15 45.7877 50.5778 9.47 0.6229
%0 90
80 o Y -
’g? 70 g 70
§ 60 geo
o 2
50 g 50
g, 40 § 40
(§. 30 &
3 R
10 101
0 0 :

20 30
Elements

(a) 8 Measured Modes without SEREP

However, when partial DOFs are measured, 15
measured modes were required to successfully detect
all damaged elements. It implies that considering
additional modes are a complementary step to
maintain damage detection capability in case of in-

complete measurements of the mode shapes.

4. Conclusions and Future Work

In this paper, a new regularization method by
parameter subset selection has been proposed for
identifying damage within structural systems. For
residual function, residual force vector is employed.

The method is beneficial because the number of the

(b) 15 Measured Modes with SEREP
Figure 3 Sub-Space Angle used in ldentification of Damaged Elements

damaged parameters can be greatly reduced for the
subsequent model updating process. For the modal
expansion process, system equivalent reduction and
expansion process(SEREP) is utilized in this paper.
The advantage that this formulation using the re-
sidual force vector for damage localization has over
the original method is that it can more accurately
identify multiple damage locations. This ability can
be attributed to the modified residual function and
that fact that the sensitivity matrix has a higher
order of nonlinearity than the fundamental meodal
properties. The performance of the proposed method
was demonstrated using an illustrative example

with multiple damage locations. The proposed meth-

HEMMTREEE =2A H21H M15(2008.2) 8]
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od in this paper has proven to be a robust and via-
ble tool in structural health monitoring appli-
cations. However, further validation using physical
specimens and real world measurement noise will be
pursued in future studies to investigate the robust-

ness of this approach.

Acknowledgement

This work was supported by the research fund of

Seoul National University of Technology.

References

Baruch, M., Bar-Itzhack, 1.Y. (1978) Optimum
Weighted Orthogonalization of Measured Modes,
AIAA Journal, 16, pp.346~351.

Berman, A., Nagy, E.J. (1983) Improvements of a
Large Analytical Model Using Test Data, AIAA
Journal, 21, pp.1168~1173.

Doebling, S.W. (1996) Minimum-rank optimal update
of elemental stiffness parameters for structural
damage identification, AIAA Journal, 34, pp.2615
~2621.

Doebling, S.W., Farrar, C.R., Prime, M.B. (1998)
A Summary Review of Vibration—based Damage
Identification Methods, The Shock and Vibration
Digest, 30, pp.91~105.

Efroymson, M.A. (1960) Multiple Regression Ana-
lysis, in Mathematical Methods for Digital Com-~
puters. John Wiley: New York.

Fox, R.L., Kapoop, M.P. (1968) Rates of Change of
Eigenvalues and Eigenvectors, AIAA Journal, 6,
pp.2426~2429.

Fregolent, A., D’Amcrogio, W., Salvini, P., Ses-
tieri, A. (1996) Regularization Techniques for
Dynamic Model Updating Using Input Residuals,
Inverse Problems in Engineering, 2, pp.171~200.

Friswell, M.I., Penny, J.E.T. (1997) Is Damage
Location using Vibration Measurement Practical?
EUROMECH 365 International Workshop: DAMAS
97, Structural Assessment using Advanced Signal
Processing Procedures Sheffield, UK

Friswell, M.1., Penny, J.E.T., Garvey, S.D. (1997)
Parameter Subset Selection in Damage Location,
Inverse Problems in Engineering, 5, pp.189~215.

82 s=EAMTEEEE =27 M21H R15(2008.2)

Kaouk, M., Zimmerman, D.C. (1994) Structural
Damage Assessment Using a Generalized Minimum
Rank Perturbation-Theory. AIAA Journal, 32, pp.
836~842.

Koh, B.H., Dyke, S.J. (2007) Structural health
monitoring for flexible bridge structures using
correlation and sensitivity of modal data, Compu-
ters & Structures, 85, pp.117~130.

Lallement, G., Piranda, J. (1990) Localization Me-
thods for Parameter Updating of Finite Element
Models in Elastodynamics. 8th International Modal
Analysis Conference Orlando, Florida, pp.579~585.

Messina, A., Jones, 1.A., Williams, E.J. (1996)
Damage Detection and Localisation Using Natural
Frequency Changes, Proceedings Conference Iden-
tification in Engineering Systems Swansea, UK
pp.67~76

Messina, A., Williams, E.J., Contursi, T. (1998)
Structural damage detection by a sensitivity and
statistical-based method, Journal of Sound and
Vibration, 216, pp.791~808.

Miller, A.J. (1996) The convergence of Efroymson’s
stepwise regression algorithm. American Statis-
tician, 50, pp.180~181.

Rothwell, E., Drachman, B. (1989) A Unified App-
roach to Solving Ill-Conditioned Matrix Problems,
International Journal for Numerical Methods in
Engineering, 28, pp.609~620.

Song, W., Dyke, S.J., Yun, G.J., Harmon, T.G.
(2007) Trust-region Optimization Based Model
Updating with Subset Selection and Damage Fun-
ctions for SHM. World Forum on Smart Materials
and Smart Structures Technology (SMSST'07) Cho-
ngaing & Nanjing, China, May, 22~27

Teughels, A., De Roeck, G. (2003) Damage assess-
ment of the Z24 bridge by FE model updating, in
Damage Assessment of Structures, Proceedings,
pp.19~26.

Titurus, B., Friswell, M.I., Starek, L. (2003)
Damage detection using generic elements: Part II.
Damage detection, Computers & Structures, 81,
pp.2287~2299.

Yun, G.J., Ogorzalek, K.A., Dyke, S.J. (2007)
Structural Damage Detection using Genetic Algori-
thms: an Empirical Study of Genetic Operators,
Engineering Optimization Submitted in 2007.



