References
-
van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the
$\alpha$ amylase family. J. Biotechnol. 94: 137-155 (2002) https://doi.org/10.1016/S0168-1656(01)00407-2 - Srichuwong S, Jane J-L. Physicochemical properties of starch affected by molecular composition and structure: A review. Food Sci. Biotechnol. 16: 663-674 (2007)
-
Zhang T, Oates CG. Relationship between
$\alpha$ -amylase degradation and physico-chemical properties of sweet potato starches. Food Chem. 65: 157-163 (1999) https://doi.org/10.1016/S0308-8146(98)00024-7 - Smith PS. Starch derivatives and their use in foods. pp. 237-269. In: Food Carbohydrates. Lineback DR, Inglett GE (eds). AVI, Westport, CT, USA (1982)
- Xie SX, Liu Q, Cui SW. Starch modification and application. pp. 357-405. In: Food Carbohydrates: Chemistry, Physical Properties, and Application. Cui SW (ed). CRC Press, Boca Raton, FL, USA (2005)
- Bechtel WG. Staling studies of bread made with flour fractions. V. Effect of a heat-stable amylase and a cross-linked starch. Cereal Chem. 36: 368-372 (1959)
- Han X-Z, Ao Z, Janaswamy S, Jane J-L, Chandrasekaran R, Hamaker BR. Development of a low glycemic maize starch: Preparation and characterization. Biomacromolecules 7: 1162-1168 (2006) https://doi.org/10.1021/bm050991e
- Hebeda RE, Bowles LK, Teague WM. Development in enzymes for retarding staling of baked goods. Cereal Food World 35: 453-457 (1990)
- Park JH, Park KH, Jane J-L. Physicochemical properties of enzymatically modified maize starch using 4-glucanotransferase. Food Sci. Biotechnol. 16: 902-909 (2007)
- Alexander RJ. New starches for food application. Cereal Food World 41: 796-798 (1996)
- Davis JP, Supatcharee N, Khandelwal RL, Chibbar RN. Synthesis of novel starches in planta: Opportunities and challenges. Starch/Starke 55: 107-120 (2003)
- Brandam C, Mayer XM, Proth J, Strehaiano P, Piaguad H. An original kinetic model for the enzymatic hydrolysis of starch during mashing. Biochem. Eng. J. 13: 43-52 (2003) https://doi.org/10.1016/S1369-703X(02)00100-6
- Hamdi G, Ponchel G. Enzymatic degradation of epichlorohydrin crosslinked starch microspheres by alpha-amylase. Pharm. Res. 16: 867-875 (1999) https://doi.org/10.1023/A:1018878120100
-
Lee KY, Kim YR, Park KH, Lee HG. Effect of
$\alpha$ glucanotransferase treatment on the thermo-reversibility and freeze-thaw stability of a rice starch gel. Carbohyd. Polym. 63: 347-354 (2006) https://doi.org/10.1016/j.carbpol.2005.08.050 -
Rolland-Sabate A, Colonna P, Potocki-Veronese G, Monsan P, Planchot V. Elongation and insolubilisation of
$\alpha$ -glucan by the action of Neisseria polysaccharea amylosucrase. J. Cereal Sci. 40: 17-30 (2004) https://doi.org/10.1016/j.jcs.2004.04.001 - Kamasaka H, Sugimoto K, Takara H, Nishimura T, Kuriki T. Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin. Appl. Environ. Microb. 68: 1658-1664 (2002) https://doi.org/10.1128/AEM.68.4.1658-1664.2002
-
Kuriki T, Imanaka T. The concept of the
$\alpha$ -amylase family: Structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557-565 (1999) https://doi.org/10.1016/S1389-1723(99)80114-5 -
Svensson B. Protein engineering in the
$\alpha$ -amylase family: Catalytic mechanism, substrate specificity, and stability. Plant Mol. Biol. 25: 141-157 (1994) https://doi.org/10.1007/BF00023233 -
Takaha T, Yanase M, Okada S, Smith SM. Disproportionating enzyme (4-
$\alpha$ -glucanotransferase; E.C 2.4.1.25) of potato: Purification, molecular cloning, and potential role in starch metabolism. J. Biol. Chem. 268: 1391-1396 (1993) - Takaha TM, Yanase H, Takata S, Smit SM. Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. J. Biol. Chem. 271: 2902-2908 (1996) https://doi.org/10.1074/jbc.271.6.2902
- Chrastil J. Improved colorimetric determination of amylose in starches or flours. Carbohyd. Res. 159: 154-158 (1987) https://doi.org/10.1016/S0008-6215(00)90013-2
- Jane J, Chen J. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chem. 69: 60-65 (1992)
- Dubois M, Gilles KA, Hamilton K, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
- Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46: S33-S50 (1992)
- Subramony NM. Physicochemical and functional properties of tropical tuber starches: A review. Starch/Stärke 54: 559-592 (2002)
- Hizukuri S, Abe J, Hanashiro I. Starch: Analytical aspects. pp. 305-390. In: Carbohydrates in Food. 2 ed. Eliasson A-C (ed). CRC Press, Boca Raton, FL, USA (2006)
- Kaper T, Talik B, Ettema TJ, Bos H, van der Maarel MJEC, Dijkhuizen L. Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels. Appl. Environ. Microb. 71: 5098-5106 (2005) https://doi.org/10.1128/AEM.71.9.5098-5106.2005
- Tedra Y, Fujii K, Takaha T, Okada S. Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: Production of cycloamylose. Appl. Environ. Microb. 65: 910-915 (1999)
- Marchant JL, Blanshard MV. Studies of the dynamics of the gelatinization of starch granules employing a small angle light scattering system. Starch/Starke 30: 257-264 (1978) https://doi.org/10.1002/star.19780300803
- Imberty A, Buleon A, Tran V, Perez S. Recent advances in knowledge of starch structure. Starch/Stärke 43: 375-384 (1991) https://doi.org/10.1002/star.19910431002
- Hizukuri S, Takeda Y, Usami S, Takese Y. Effect of aliphatic hydrocarbon groups on the crystallization of amylodextrin: Model experiments for starch crystallization. Carbohyd. Res. 83: 193-199 (1980) https://doi.org/10.1016/S0008-6215(00)85384-7
- Zobel HF. Molecules to granules: A comprehensive starch review. Starch/Starke 40: 44-50 (1988) https://doi.org/10.1002/star.19880400203
- Perera C, Lu Z, Sell J, Jane J. Comparison of physicochemical properties and structures of sugary-2 cornstarch with normal and waxy cultivars. Cereal Chem. 78: 249-256 (2001) https://doi.org/10.1094/CCHEM.2001.78.3.249
- Holm J, Lundquist I, Bjorck I, Eliasson A-C, Asp NG. Degree of starch gelatinization, digestion rate of starch in vitro, and metabolic response in rats. Am. J. Clin. Nutr. 47: 1010-1016 (1988) https://doi.org/10.1093/ajcn/47.6.1010
- Kainuma K. Starch oligosaccharides: Linear, branched, and cyclic. pp. 125-152. In: Starch: Chemistry and Technology. 2nd ed. Whistler RL, BeMiller JN, Paschall EF (eds). Academic Press, Inc., Orlando, FL, USA (1984)
- Hoseney RC. Starch. pp. 29-64. In: Principles of Cereal Science and Technology. American Association of Cereal Chemists, St. Paul, MN, USA (1994)
- Miles MJ, Morris VJ, Ring SG. Gelation of amylose. Carbohyd. Res. 135: 257-269 (1996)
- Euverink GJW, Binnema DJ. Use of modified starch as an agent for forming a thermoreversible gel. U.S. patent 6,864,063 (2005)
- Kaper T, van der Maarel MJEC, Euverink GJW, Dijkhuizen L. Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochem. Soc. T. 32: 279-282 (2004) https://doi.org/10.1042/BST0320279
- Yuan RC, Thompson DB, Boyer CD. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines. Cereal Chem. 70: 81-89 (1993)